http://www.gateforum.com/gate_papers.php

IN: INSTRUMENTATION ENGINEERING

Q.1 to Q.20 Carry 1 Mark Each

- 1 If z = x+jy, where x and y are real. The value of $|e^{jz}|$ is
 - (A) 1 (B) $e^{\sqrt{x^2 + y^2}}$ (C) e^y (D) e^{-y}
- 2 The value of $\int \frac{\sin z}{z} dz$, where the contour of integration is a simple closed

curve around the origin, is

- (A) 0 (B) $2\pi j$ (C) ∞ (D) $\frac{1}{(2\pi j)}$
- Let P=0 be a 3x3 real matrix. There exist linearly independent vectors x and y such that Px=0 and Py=0. The dimension of the range space of P is
 (A) 0
 (B) 1
 (C) 2
 (D) 3
- A sphere of unit of radius is centered at the origin. The unit normal at a point(x,y,z) on the surface of the sphere is the vector
 - (A) (x, y, z) (B) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ (C) $\left(\frac{x}{\sqrt{3}}, \frac{y}{\sqrt{3}}, \frac{z}{\sqrt{3}}\right)$ (D) $\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}, \frac{z}{\sqrt{2}}\right)$

An LVDT is supplied with a sinusoidal voltage of amplitude 5V and frequency 1kHz. The output is connected to an ac voltmeter. The reading of the voltmeter is 1V for a displacement of 1mm from the null position. When the displacement is 1mm in the opposite direction from the null position, the reading of the voltmeter is

(A) -1V (B) -0.2V (C) 1V (D) 5V

6 The circuit shown in the figure is

1

7 The diodes in the circuit shown are ideal. A voltage of OV represents logic 0 and +5V represents logic 1. The logic function Z realized by the circuit for logic inputs X and Y is

8 The minimal sum-of-products expression for the logic function f represented by the given Karnaugh map is

- (A) $QS + P\overline{R}S + PQR + \overline{P}RS + \overline{P}Q\overline{R}$
- (B) $\overline{QS} + \overline{PRS} + \overline{PQR} + P\overline{RS} + P\overline{QR}$
- (C) $\overline{PRS} + \overline{PQR} + P\overline{RS} + P\overline{QR}$
- (D) $P\overline{R}S + PQR + \overline{P}RS + \overline{P}Q\overline{R}$
- 9 In the figure shown, the initial state of Q is 0. The output is observed after the application of each clock pulse. The output sequence at Q is (A) 0000... (B) 1010... (C) 1111... (D) 1000...

	ATEFORUM			IN Gate - 2009
	gineering Success		http://www.gatefor	rum.com/gate_papers.php
10	The binary represen (A) 1.111	tation of the decima (B) 1.010	al number 1.375 (C) 1.011	5 is (D) 1.001
11	Consider a system devices connected microprocessor (A) only reads from (B) only writes to th (C) both reads from (D) neither reads from	consisting of a mic by a common be the bus ie bus and writes to the b om nor writes to the	roprocessor, ma us. During DM us e bus	emory, and peripheral A data transfer, the
12	The fundamental p seconds, is (A) 1s	eriod of x(t) = 2 sin (B) 0.67s	12πt + 3sin 3πt , (C) 2s	with t expressed in (D) 3s
13	A linear time-invariant form as $\frac{1}{\sqrt{1+\omega^2}} \angle -$ (A) $\frac{1}{\sqrt{2}} \cos t$	tan ⁻¹ ω . For input x (B) $\frac{1}{\sqrt{2}}\cos\left(t - \frac{\pi}{4}\right)$	as a frequency r (t) = sin t, the c (C) $\frac{1}{\sqrt{2}}$ sin t	The sponse given in polar butput is (D) $\frac{1}{\sqrt{2}} \sin\left(t - \frac{\pi}{4}\right)$
¹⁴ ing	A 50% duty cycle so in an ideal frequency modulated signal is that produces an o modulated signal fro (A) a square wave (C) a triangular wave	quare wave with ze y modulator with a given as an input to output proportional om that of the carrie (B) a train e (D) a sinus	ro mean is used sinusoidal carrie o an ideal phase to the differe er). The output o of impulses with oidal wave	d as a baseband signal er of frequency ω_c . The demodulator (a circuit ence in phase of the of the circuit is a alternating signs
15	The figure shows a setting which ensure 2.5	periodic waveform es a stationary disp	to be displayed ay is	d on a CRO. A trigger

(A) level: 0.2V, slope: -ve(B) level: 0.5V, slope: -ve

(C) level: -0.2V, slope: +ve

(D) level: 1.8V, slope: -ve

		ATEFORUM				I	N Gate - 2009
		gineering Success		ht	tp://www.gatefo	prum.com/gat	e_papers.php
	16	The input impedance a 45pF capacitance. The effective input c (A) 4.5pF	e of CRO is It is used v apacitance (B) 5pF	equivalent vith a com at the pro	t to a 1MΩ re pensated 10- be tip is (C) 45pF	sistance in to-1 attenu (D) 450p	parallel with ation probe. F
	17	A galvanometer with used to realize a do range of this voltmo resistance of value	n internal r voltmeter eter can be	resistance with a fu e extended	100Ω and fu ill scale rang d to 10V by	III-scale cur le of 1V. Th connecting	rent 1mA is ne full scale an external
		(A) 9K12	(B) 9.9KD		(C) TUK Ω	(L) ΠΚΩ
	18	A plant with a trans	sfer functio	$n \frac{2}{s(s+3)}$	is controlled	by a PI co	ntroller with
		K _p =1 and K _i ≥0 in a ensures zero steady (A) 0	unity feed state error (B) 1/3	pack config for a step	guration. The change in th (C) 1/2	lowest valu ne reference (D	ue of K _i that input is)) 1
	19	A mass spectromete N_2^+ . The atomic mas ¹⁴ N = 14.0031 amu.	r is to be u sses are ¹² (The resolvi	sed to reso C = 12.000	olve peaks co 0, ¹⁶ O = 15.9 of the mass s	rresponding 949, and spectromete	to CO⁺ and er should be
		atleast (A) 250	(B) 350		(C) 2500	(D) 3500	
	20	Assuming complete to	dissociatior	n, the pH c	of a 1mM solu	ution of H_2S	O ₄ is closest
jineeri	Q.21	(A) 3 to Q.60 carry 2 Mar	(B) 2.7 ks each		(C) 2.4	(D) 2.1	
	21	The eigen values of	a (2x2) ma	trix X are	-2 and -3. Th	e eigenvalu	es of matrix
		(X+I) ^{-ĭ} (X+5I) are (A) -3,-4	(B) -1,-2		(C) -1,-3	(D) -2,-4	
	22	The matrix P = $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ (A) 30°	0 1 0 0 rotate 0 (B) 60°	s a vector	about the ax (C) 90°	tis $\begin{bmatrix} 1\\1\\1\end{bmatrix}$ by a (D) 120°	n angle of
	23	A screening test is 12% of the positive Assuming that the p probability that a pe (A) 0.0027	carried out reports ar robability o rson testec (B) 0.0173	to detect nd 15% of f a person I gets an ir 3	a certain di the negative getting a pos ncorrect repo (C) 0.1497	isease. It is e reports a sitive report rt is (D) 0.210	found that re incorrect. is 0.01, the
	24	One of the roots of t (A) j	he equation (B) $\frac{\sqrt{3}}{2}$ + j	n x ³ =j, wh $\frac{1}{2}$	ere j is positi (C) $\frac{\sqrt{3}}{2} - j\frac{1}{2}$	ve square r (D) $-\frac{\sqrt{3}}{2}$	oot of -1, is - j <mark>1</mark> 2

http://www.gateforum.com/gate papers.php

29 A stroboscopic system is used for measuring the speed of a rotating shaft. The shaft has one target mark on it. The maximum strobe rate at which synchronism is achieved is r_1 flashes per minute. The next lower flash rate at which synchronism is achieved is r_2 flashes per minute. The speed of the shaft in rpm is

(A)
$$\frac{r_1r_2}{r_1 - r_2}$$
 (B) $\frac{r_1r_2}{r_1 + r_2}$ (C) $\frac{r_2^2}{r_1 - r_2}$ (D) $\frac{r_1^2}{r_1 + r_2}$

30 The figure shSows the cross-sectional diagram of an orifice flow meter with an orifice radius R. Point 'a' is 30R upstream while points 'b' and 'c' are 0.8R and 30R downstream from the orifice respectively. The pressures at points a, b and c are P_a, P_b and P_c respectively. Then

IN Gate - 2009

33 In the circuit shown, the Zener diode has ideal characteristics and a breakdown voltage of 3.2V. The output voltage V_o for an input voltage $V_i = +1V$ is closest to

The figure above shows a 3-bit ripple counter, with Q_2 as MSB. The flip-flops are rising-edge triggered. The counting direction is

- (A) always down
- (B) always up
- (C) up or down depending on the initial state of Q_0 only
- (D) up or down depending on the initial states of Q_2 , Q_1 and Q_0

An 8-bit ADC, with 2's complement output, has a nominal input range of -2V to +2V. It generates a digital code of 00H for an analog input in the range – 7.8125mV to +7.8125mV. An input of -1.5V will produce a digital output of (A) 90H
 (B) 96H
 (C) 9BH
 (D) A0H

38 The following is an assembly language program for 8085 microprocessors:

39

40

42

http://www.gateforum.com/gate_papers.php

Address 1000H 1002H 1004H 1007H 1008H	Instruction Code 3E06 C6 70 32 07 10 AF 76	Mnemonic MVI A, 06H ADI 70H STA 1007H XRA A HLT			
When this pro (A) 00H	ogram halts, the accumul (B) 06H	ator contains (C) 9BH	(D) AOH		
For input x(t)), an ideal impulse sampli	ng system produ	ces the output		
$y(t) = \sum_{n=1}^{\infty} x(t)$	$kTig)\deltaig(t-kTig)$ where $\deltaig(tig)$ is	s the Dirac delta	function.		
The system is (A) nonlinear (B) nonlinear (C) linear and (D) linear and The root mea	s and time invariant and time varying d time invariant d time varying an squared value of x(t) =	3+2sin(t) cos(2	t)		
(A) √3	(B) √8	(C) √10	(D) √11		
An analog sig	nal sampled at 9kHz. The transfer function $H[z] =$	e sequence so ob $1 - z^{-6}$. One of th	tained is filtered by an ne analog frequencies		
(A) 0.75kHz	(B) 1kHz	ne filter is zero is (C) 1.5kHz	; (D) 2kHz		
The transfer function H(z) of a fourth-order linear phase FIR system is given					
H[z] = (1 + 2z)	$(z^{-1} + z^{-2})G(z)$. Then G(z) i	S			
(A) 3 + 2z ⁻¹ +	z^{-2} (B) $1 + \frac{1}{2}z^{-1} + \frac{1}{3}z^{-1}$	-2 (C) $\frac{1}{3} + 2z^{-1}$	+ z^{-2} (D) 1 + 2z + 3 z^{2}		

43 The dc potentiometer shown in the figure has a working current of 10mA with switch S open. Let $R_s+R_1=100W$. The galvanometer G can only detect currents greater than 10mA. The maximum percentage error in the measurement of the unknown emf E_x as calculated from the slider position shown is closest to

© All rights reserved by GATE Forum Educational Services Pvt. Ltd., <u>www.gateforum.com</u> No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this questions paper at <u>www.gatementor.com</u>. 8

44 A filter is represented by the signal flow graph shown in the figure. Its input x(t) and output is y(t). The transfer function of the filter is

GATEFORUM	IN Gate - 2009
Engineering Success	http://www.gateforum.com/gate_papers.php

- 49 The operating voltage of an X-ray tube is changed from 40kV to 50kV. The resulting change in the shortest wavelength generated is (A) +20% (B) -20% (C) +25% (D) -36%
- In a pulsed ultrasound imaging system, a single 5MHz crystal is used both as 50 source and as detector. Bursts of atleast 20cycles are needed for acceptable image quality. The velocity of sound in the tissue being imaged is 1500m/s. The minimum distance of the objects to be imaged should be (C) 3mm (A) 12mm (B) 6mm (D) 1mm

Common Data Questions Common Data for Questions 51 and 52:

The figure shows a sample-and-hold circuit using a MOSFET as a switch. The threshold voltage of the MOSFET as a switch. The threshold voltage of the MOSFET is +2V. It has zero leakage current in the off state. Assume that the capacitor is ideal.

during hold are, respectively,

- (A) +12V ≥ +7V and ≤ -3V (B) $-12V_{,} \ge +3V_{,}$ and $\le -7V_{,}$
- (C) $+12V_{,} \ge +3V_{,}$ and $\le -7V_{,}$
- (D) $-12V_{,} \ge +7V_{,}$ and $\le -3V_{,}$
- 52 The circuit is used at a sampling rate of 1kHz, with an A/D converter having a conversion time of 200ms. The op amp has an input bias current of 10nA. the maximum hold error is (A) 1mV

(B) 2mV (C) 5mV (D) 10mV

Common Data Questions Common Data for Questions 53 and 54:

The circuit shown in the figure uses three identical transistors with $V_{BE} = 0.7V$ and β =100. Given R₁=R₂=R₃=1k Ω , kT/q_e=25mV. The collector current of transistor Q₃ is 2mA.

Common Data for Questions 55 and 56:

The figure shows an arrangement for measuring small angular displacements in a vertical plane. A non-conducting tube of length 2I and rectangular cross section (width w, height d) is bent along an arc of a circle with radius R>>d, centered at P. Four electrode plates of length I and width w are placed to form two curved parallel plate capacitors C_1 and C_2 with a negligible gap between them. The tube contains water with an air bubble of rectangular cross section (width w, height d) and length I/4. the capacitors are connected in a bridge circuit as shown in the figure, where the bridge has ac excitation v_i . Angular displacement $\Delta\theta$ occurs about the point P.

55 The range of angular displacement (in radians) this system can measure is

(A)
$$-\frac{l}{8R}$$
 to $+\frac{l}{8R}$
(B) $-\frac{l}{4R}$ to $+\frac{l}{4R}$
(C) $-\frac{3l}{4R}$ to $+\frac{l}{4R}$
(D) $-\frac{l}{R}$ to $+\frac{l}{R}$

56 The sensitivity $\frac{v_o / v_i}{\Delta \theta}$ is

- (A) inversely proportional to R and I
- (B) inversely proportional to R and directly proportional to I
- (C) directly proportional to R and I
- (D) directly proportional to R and inversely proportional to I

Linked Answer Questions Statement for Linked Answer Questions 57 and 58:

A disturbance input d(t) is injected into the unity feedback control loop shown in the figure. Take the reference input r(t) to be a unit step.

(A) $\sqrt{\frac{3}{13}}$ (B) $\sqrt{\frac{3}{13}}$ (C) $\sqrt{\frac{3}{13}}$ (D) $\sqrt{\frac{2}{13}}$	20 13

Statement for Linked Answer Questions 59 and 60:

A Michelson interferometer illuminated with a source of central wavelength λ_o and spectral width of $\Delta\lambda$ is adjusted for equal path difference for the beams returning from the two mirrors. When one of the mirrors is moved by a distance of 0.1mm from this position, 300 fringes move past the field of view. When the mirror is moved further, the fringes completed disappear when the mirror is approximately 4cm from the initial position.

59	The central wavel	ength of the source	İS	
	(A) 540nm	(B) 632.8nm	(C) 667nm	(D) 720nm
60	The spectral width	n of the source $\Delta\lambda$ is	s approximately	
	(A) 0.0056nm	(B) 0.0100nm	(C) 0.0500nm	(D) 0.1000nm