
 2 I permitted him to leave, I wouldn't have had any problem with absent I? (A) Had, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't Answer: (A) 3. A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours 	Engineering Su	UM ccess	ME, GA	TE-2019,	SET-I		<u>www.gateforum.co</u>
 The minister avoided any mention of the issue of women's reservation in the private seaccused of the issue. (A) belting (B) skirting (C) tying (D) collaring Answer: (B) Click here to watch video explane (A) Had, would (B) Have, wouldn't have had any problem with absent 1? (A) Had, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't Answer: (A) Click here to watch video explane (A) Hat the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours 			GENERA	<u>l Apti</u>	TUDE		
accused of the issue. (A) belting (B) skirting (C) tying (D) collaring Answer: (B) Click here to watch video explant 2. I permitted him to leave, I wouldn't have had any problem with absent I? (A) Had, would (B) Have, wouldn't (A) Had, would (B) Have, wouldn't (D) Had, wouldn't (C) Have, would (D) Had, wouldn't (A) soverer noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours			<u>Q. No. 1 – 5 Ca</u>	rry One	Mark Each	L	
accused of the issue. (A) belting (B) skirting (C) tying (D) collaring Answer: (B) Click here to watch video explant 2 I permitted him to leave, I wouldn't have had any problem with absent I? (A) Had, would (B) Have, wouldn't (A) Had, would (B) Have, wouldn't (D) Had, wouldn't (C) Have, would (D) Had, wouldn't (A) sover: (A) (A) Have, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't (A) Sover: (A) (A) Have, would (B) Have, wouldn't (B) Have, wouldn't (B) Have, wouldn't (A) Have, would (D) Had, wouldn't (A) Sover: (B) T.5 hours (C) 4 hours and 15mins (D) 8.5 hours	TI .	• . • • • •	(° C.1 °	C	,	·· · · · · · · ·	, , <u>I</u>
(A) belting (B) skirting (C) tying (D) collaring Answer: (B) Click here to watch video explant 2.		-	ition of the issu	le of wo	men s reser	vation in the priv	ate sector. He wa
 2 I permitted him to leave, I wouldn't have had any problem with absent I? (A) Had, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't Answer: (A) 3. A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours 	(A) be	elting (B)	skirting	(C)	tying	(D) coll	aring
absent I? (A) Had, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't Answer: (A) Click here to watch video explant 3. A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours	swer: (F	3)			Click here	e to watch video ex	xplanation
absent I? (A) Had, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't Answer: (A) Click here to watch video explant 3. A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours							
absent I? (A) Had, would (B) Have, wouldn't (C) Have, would (D) Had, wouldn't Answer: (A) Click here to watch video explant 3. A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours							
 (A) Had, would (B) Have, wouldn't (D) Had, wouldn't (D) Click here to watch video explant (A) A worker noticed that the hour hand on the factory: (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours 			to leave, I	wouldn'	t have ha	d any problem	with him bein
(C)Have, would(D)Had, wouldn'tAnswer:(A)(D)Had, wouldn't3.A worker noticed that the hour hand on the factory. For how long did she stay in the factory?(C)(D)Had, wouldn't(A)3.75 hours(B)7.5 hours(C)4 hours and 15mins(D)8.5 hours				(B)	Have wou	ldn't	
Answer: (A)Click here to watch video explan3.A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory?(A) 3.75 hours(B) 7.5 hours(C) 4 hours and 15mins(D) 8.5 hours							
 3. A worker noticed that the hour hand on the factory clock had moved by 225 degrees during factory. For how long did she stay in the factory? (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours 				(2)			xplanation
factory. For how long did she stay in the factory?(A) 3.75 hours(B) 7.5 hours(C) 4 hours and 15mins(D) 8.5 hours	Ň						
factory. For how long did she stay in the factory?(A) 3.75 hours(B) 7.5 hours(C) 4 hours and 15mins(D) 8.5 hours							
 (A) 3.75 hours (B) 7.5 hours (C) 4 hours and 15mins (D) 8.5 hours 	A worke	er noticed that the hour	hand on the fact	ory clock	t had moved	by 225 degrees du	uring her stay at th
(C) 4 hours and 15mins (D) 8.5 hours	factory.	For how long did she st	ay in the factory	'?			
	(A) 3.	75 hours		(B)			
Answer: (B) <u>Click here to watch video explan</u>				(D)			
	swer: (E	5)			Click here	e to watch video ex	<u>xplanation</u>
4. John Thomas, an writer, passed away in 2018.	John Th	omas, an writer	. passed away in	2018.			
(A) imminent (B) prominent (C) dominant (D) eminent			· ·		dominant	(D) emi	nent
Answer: (D) Click here to watch video explan))			Click here	to watch video ex	xplanation

	-	ers is			(\mathbf{C})	2	(D) 4	
Ans	(A) wer:	3 (D)	(B) 6		(C)		(D) 4 o watch video explanation	
			O. No.	6 - 10 Ca	rrv Two	Marks Each		
5.	A ne	rson divided an	amount of Rs. 1	00.000 int	o two na	orts and invest	ed in two different schemes.	In or
Ī	-				-		ntages are interchanged with	
	-			-			investments in the two schem	
	(A)	37:63	(B) 9:16		(C)	11:14	(D) 47:53	
Insv	ver:	(D)				Click here t	o watch video explanation	
	Unde	er a certain legal	l system, prisone	ers are allo	wed to n	nake one state	ment. If their statement turns	out
	be tr	ue then they are	hanged. If the st	atement tu	rns out t	be false then	they are shot. One prisoner r	nade
	state	ment and the ju	idge had no opti	ion but to	set him	free. Which	one of the following could b	be th
	state	ment?						
	(A)	I will be shot			(B)	I committed	the crime	
	(C)	I did not comn	nit the crime		(D)	You commit	ted the crime	
	wer:	(A)				Click here t	o watch video explanation	
nsv								
Insv								

40% from 2010 to 2016, how many employees were there at skill level T in 2016?

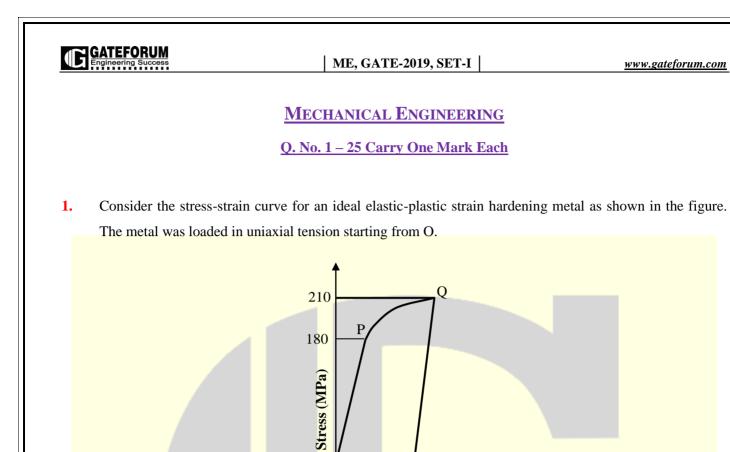
- Y respectively. If Y is a legitimate child of W, which one of the following statement is necessarily FALSE?
 - (A) M is the grandmother of Y
- (B) W is the wife of R

(D)

R is the father of Y

(C) W is the wife of P

Click here to watch video explanation


Answer: (C)

10. Congo was named by Europeans. Congo's dictator Mobuto later changed the name of the country and the river to Zaire with the objective of Africanising names of persons and spaces. However, the name Zaire was a Portuguese alteration of Nzadi o Nzere, a local African term meaning 'River that swallows Rivers'. Zaire was the Portuguese name for the Congo river in the 16th and 17 centuries. Which one of the following statements can be inferred from the paragraph above?

- (A) The term Nzadi o Nzere was of Portuguese origin
- (B) As a dictator Mobuto ordered the Portuguese to alter the name of the river to Zaire
- (C) Mobuto's desire to Africanise names was prevented by the Portuguese
- (D) Mobuto was not entirely successful in Africanising the name of his country

Answer: (D)

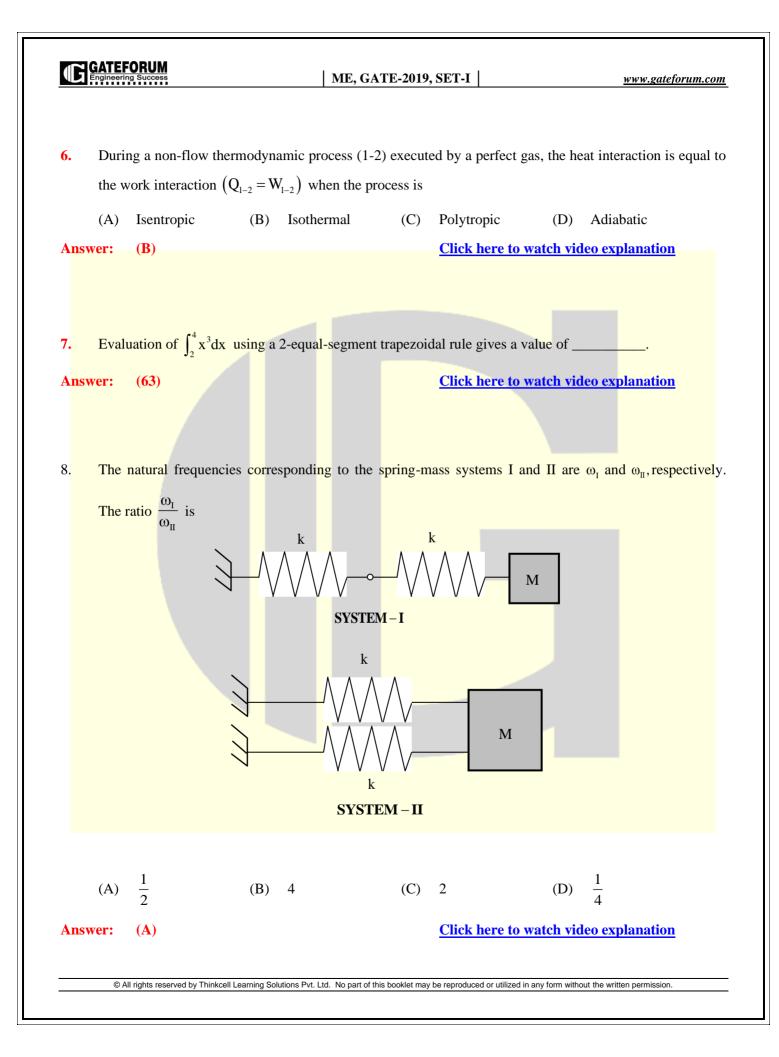
Click here to watch video explanation

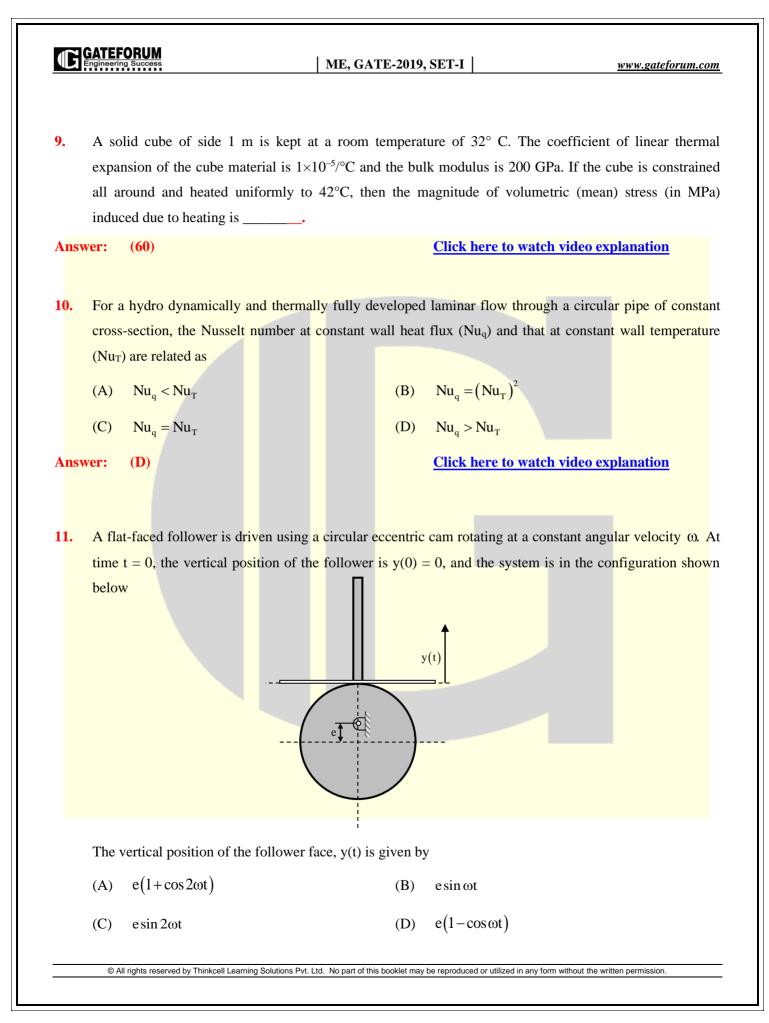
0

Upon loading, the stress-strain curve passes through initial yield point at P, and then strain hardens to point Q, where the loading was stopped. From point Q, the specimen was unloaded to point R, where the stress is zero. If the same specimen is reloaded in tension from point R, the value of stress at which the material yields again is _____MPa.

R

Strain


Answer: (210)


Click here to watch video explanation

2. The length, width and thickness of a steel sample are 400 mm, 410 mm, 40 mm and 20 mm, respectively. Its thickness needs to be uniformly reduced by 2 mm in a single pass by using horizontal slab milling. The milling cutter (diameter: 100 mm, width: 50 mm) has 20 teeth and rotates at 1200 rpm. The feed per tooth is 0.05 mm. The feed direction is along the length of the sample. If the over-travel distance is the same as the approach distance, the approach distance and time taken to complete the required machining task are

(A) 14mm, 21.4 s
 (B) 21 mm, 39.4 s
 (C) 21 mm, 28.9s
 (D) 14mm, 18.4 s
 Answer: (A)
 Click here to watch video explanation

	Engineerir	ng Success		ME, GA	TE-2019	, SET-I			<u>www.gateforum.co</u>
3.	As pe	er common design	practice,	the three types	of hydra	ulic turbines	s, in descei	nding orde	er of flow rate, a
	(A)	Francis, Kaplan,	-		(B)	Kaplan, Fi		-	
	(C)	Pelton, Kaplan,	Francis		(D)	Pelton, Fra	ancis, Kapl	lan	
Ans	wer:	(B)				Click here	e to watch	video ex	<u>planation</u>
4.	The t	able presents the o	demand o	f a product. By	simple tl	nree-months	moving a	verage me	thod, the deman
	forec	ast of the product	for the m	onth of Septeml	per is				
				Month	E	emand			
				January		450			
				February		440			
				March		460			
				April		510			
				May		520			
				June		495			
				July		475	-		
				August		560			
			L						
	(A)	490	(B)	536.67	(C)	510	(I	D) 530	
Ans	wer:	(C)				Click here	<u>e to watch</u>	video ex	<u>planation</u>
5.	The l	engths of a large	stock of t	itanium rods fol	low a no	ormal distrib	ution with	a mean ()	u) of 440 mm a
		ndard deviation (c						,	,
	441 r	, ,)				8		
	(A)	86.64%	(B)	68.4%	(C)	99.75%	(1	D) 81.8	5%
Ans	wer:	(D)	. /			Click here			

	ering Success			1		19, SET-I			<u>www.g</u>	ateforum.co
Answer:	(D)					<u>Click h</u>	ere to wat	ch video	o explanat	<u>ion</u>
12. In a	a casting p	process, a	vertical	channel th	nrough whic	ch molten m	etal and f	lows do	wnward fr	om pourin
bas	in to runne	r for reach	ning the	mold cavit	ty is called					
(A)	sprue		(B)	pin hole	(C) riser		(D) b	olister	
Answer:	(A)					Click h	ere to wat	ch video	o explanat	<u>ion</u>
13. Air	of mass 1	kg. initial	llv at 30	OK and 10) bar, is allo	wed to expa	nd isother	mallv til	ll it reache	s a pressur
		÷	-			ant of 0.287		-		-
				-	s				-	
Answer:	(0.66)					Click h	ere to wat	ch video	o explanat	ion
	, í									
	lock of a				antal flaga	The secole	notion due	4.0	.:	1 /o ²
						The accele		to grav	vity is 9.8	1 m/s². Th
						The accele block is 0.2.		e to grav	vity is 9.8	1 m/s ² . Th
						block is 0.2.		e to grav	vity is 9.8	1 m/s². Th
								to grav	vity is 9.8	1 m/s². Th
					oor and the	block is 0.2.		to grav	vity is 9.8	1 m/s ² . Th
					oor and the	block is 0.2.		to grav	vity is 9.8	1 m/s². Th
coe	fficient of	static frict	ion betv	veen the fl	oor and the	block is 0.2.	DN →			
coe A 1	fficient of	static frict force of 1	ion betv	veen the fl	oor and the	block is 0.2.	DN →			
coe A 1 fric	fficient of	static frict force of 1	ion betv	veen the fl	oor and the	block is 0.2.	N →	e. The 1		of force of
coe A 1 fric	fficient of norizontal tion (in N)	static frict force of 1	ion betv	veen the fl	oor and the	block is 0.2.	N →	e. The 1	magnitude	of force of
coe A 1 fric	fficient of norizontal tion (in N)	static frict force of 1	ion betv	veen the fl	oor and the	block is 0.2.	N →	e. The 1	magnitude	of force of
coe A l fric Answer:	norizontal tion (in N) (10)	static frict force of 1 on the blo	0 N is	applied or	oor and the	block is 0.2.	N →	e. The 1	magnitude	of force of
coe A l fric Answer:	norizontal tion (in N) (10)	static frict force of 1 on the blo	0 N is	applied or	oor and the	block is 0.2.	N →	e. The 1	magnitude	of force of
coe A l fric Answer:	fficient of norizontal tion (in N)	static frict force of 1 on the blo	0 N is	applied or	oor and the	block is 0.2.	N →	e. The 1	magnitude	of force of
COE A I fric Answer:	norizontal tion (in N) (10)	static frict force of 1 on the blo natrix P =	ion betv 0 N is ock is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	applied or	oor and the 10kg h the block	block is 0.2.	N →	e. The 1	magnitude	of force of
A l fric Answer: 15. Con	fficient of norizontal tion (in N) (10)	static frict force of 1 on the blo natrix P =	ion betv 0 N is ock is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	veen the fla applied or 	oor and the 10kg h the block	block is 0.2.	N →	e. The 1	magnitude	of force of

E GATEFORUM Engineering Success

www.gateforum.com

16. During a high cycle fatigue test, a metallic specimen is subjected to cyclic loading with a mean stress of +140 MPa, and a minimum stress of -70 MPa. The R-ratio (minimum stress to maximum stress) for this cycle loading is _____ (round off to one decimal place).

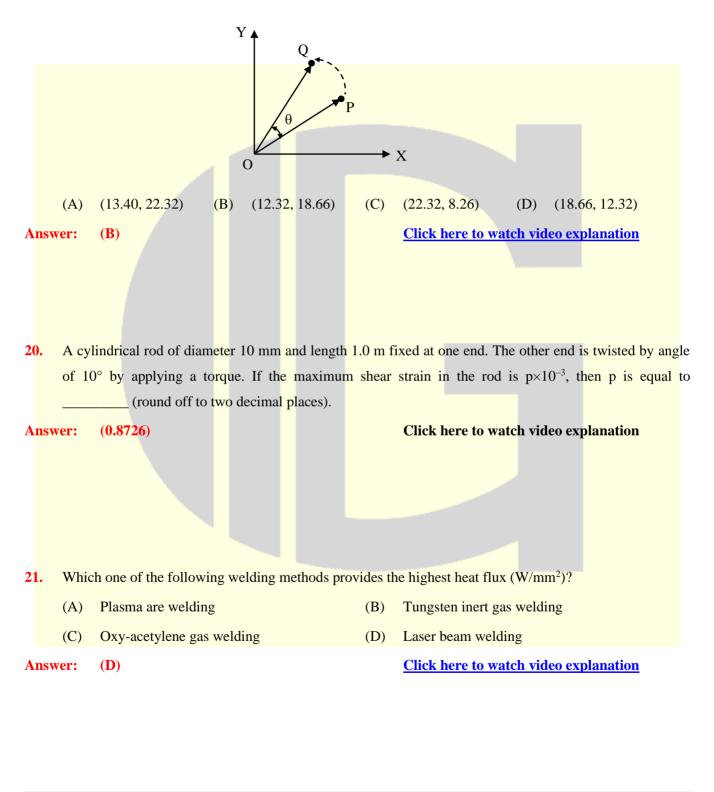
Answer: (-0.2)

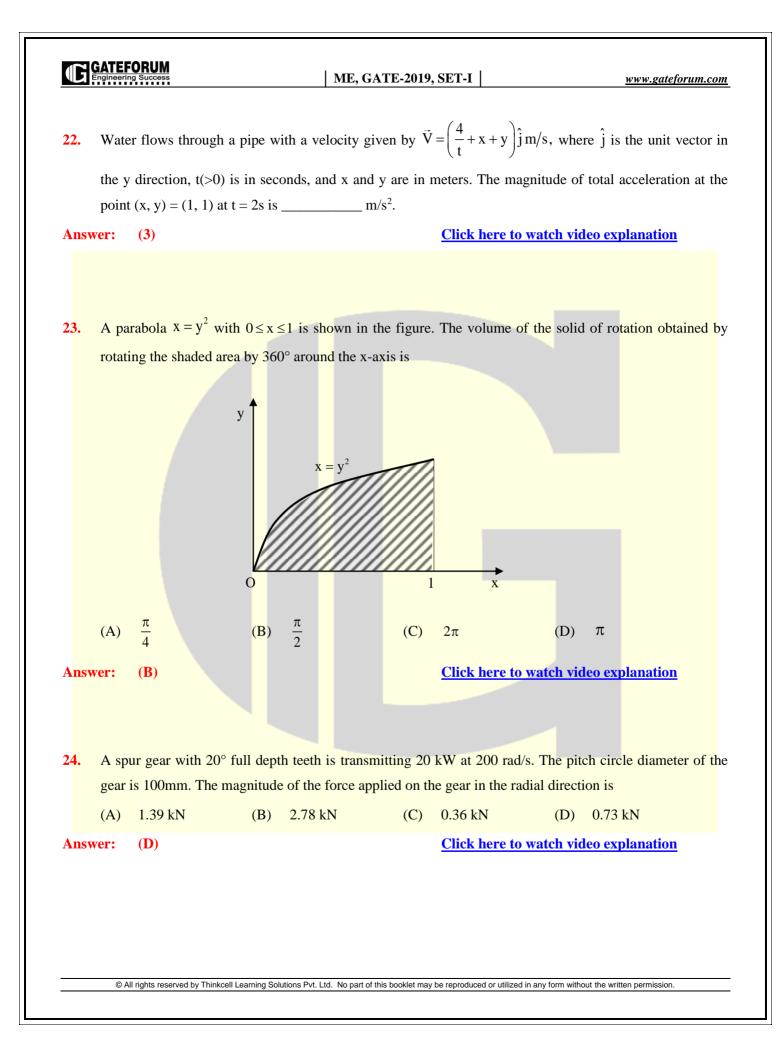
Click here to watch video explanation

- 17. A slender rod of length L, diameter d (L >> d) and thermal conductivity k_1 is joined with another rod of identical dimensions, but of thermal conductivity k_2 , to form a composite cylindrical rod of length 2L. The heat transfer in radial direction and contact resistance are negligible. The effective thermal conductivity of the composite rod is
- (A) $k_1 + k_2$ (B) $\sqrt{k_1 k_2}$ (C) $\frac{2k_1 k_2}{k_1 + k_2}$ (D) $\frac{k_1 k_2}{k_1 + k_2}$ Answer: (C) Click here to watch video explanation

18. Consider an ideal vapor compression refrigeration cycle. If the throttling process is replaced by an isentropic expansion process, keeping all the other processes unchanged, which one of the following statements is true for the modified cycle?

- (A) Coefficient of performance is the same as that of the original cycle
- (B) Coefficient of performance is lower than that of the original cycle
- (C) Refrigerating effect is lower than that of the original cycle
- (D) Coefficient of performance is higher than that of the original cycle


Answer: (D)


Click here to watch video explanation

 Engineering Success
 ME, GATE-2019, SET-I

www.gateforum.com

19. The position vector \overrightarrow{OP} of point P(20, 10) is rotated anti-clockwise in X-Y plane by an angle $\theta = 30^{\circ}$ such that point P occupies position Q, as shown in the figure. The coordinates (x, y) of Q are

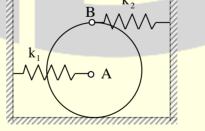
GATEFORUM ME, GATE-2019, SET-I www.gateforum.com For the equation $\frac{dy}{dx} + 7x^2y = 0$, if y(0) = 3/7, then the value of y(1) is 25. (A) $\frac{7}{3}e^{-7/3}$ (B) $\frac{3}{7}e^{-7/3}$ (C) $\frac{3}{7}e^{-3/7}$ (D) $\frac{7}{3}e^{-3/7}$ Click here to watch video explanation **(B)** Answer: Q. No. 26 - 55 Carry Two Marks Each 26. A cube of side 100 mm is placed at the bottom of an empty container on one of its faces. The density of the material of the cube is 800 kg/m³. Liquid of density 1000 kg/m³ is now poured into the container. The minimum height to which the liquid needs to be poured into the container for the cube to just lift up is _ mm. (80) Click here to watch video explanation **Answer:** A project consists of six activities. The immediate predecessor of each activity and the estimated duration 27. is also provided in the table below: Immediate Estimated duration Activity predecessor (weeks) Ρ 5 1 Q R 2 0 S P, R 4 Т Ρ 6

If all activities other than S take the estimated amount of time, the maximum duration (in weeks) of the activity S without delaying the completion of the project is ______.

3

Answer: (6)

<u>Click here to watch video explanation</u>


© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

S,T

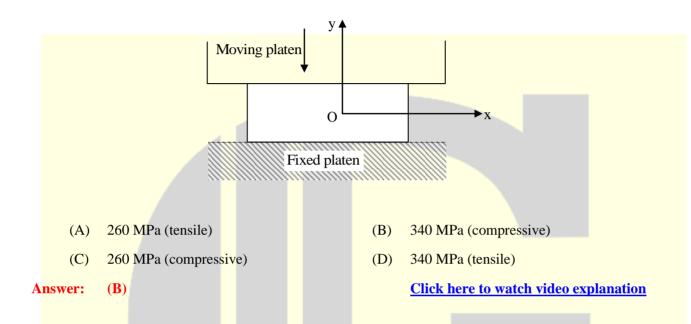
U

GATEFORUM ME, GATE-2019, SET-I www.gateforum.com 28. Consider an elastic straight beam of length $L = 10\pi m$, with square cross-section of side a=5 mm, and Young's modulus E = 200 GPa. This straight beam was bent in such a way that the two ends meet, to form a circle of mean radius R. Ends of the beam Assuming that Euler-Bernoulli beam theory is applicable to this bending problem, the maximum tensile bending stress in the bent beam is ____ MPa. **Click here to watch video explanation Answer:** (100)29. A truss is composed of members AB, BC, CD, AD and BD, as shown in the figure. A vertical load of 10 kN is applied at point D. The magnitude of force (in kN) in the member BC is _____ 10kN D 45° 45° В **Click here to watch video explanation Answer:** (5) © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

	Engineerin	g Success		ME, GATE-20	19, SET-	I	<u>www</u>	.gateforum.co
30.	A gas	s is heated in	n a duct as it flows o	over a resistance	e heater.	Consider a 101	kW electric he	ating systen
	The g	gas enters th	e heating section of	the duct at 100	kPa and	27°C with a vol	lume flow rate	of $15m^{3}/s$.
	heat i	is lost from t	he gas in the duct to	the surrounding	s at a rat	e of 51kW, the e	xit temperature	e of the gas
			t pressure, ideal gas 1 kJ/kg.K; R = 0.5 k		ange in 1	kinetic and pote	ential energies	and constant
	(A)	53°C	(B) 32°C	(C	c) 37°C	C (I	D) 76°C	
Ansv	ver:	(B)			<u>Clic</u>	<u>k here to watch</u>	video explana	ation
31.	harm	onic function	tion is analytic if i a, then its conjugate $1^2 - 2x^2 + constant$	harmonic functi	on v(x,			y ² + 4xy is
	(C)	$2x^2 - 2y^2 - $	+ xy + constant	(E	$(-4y^2)$	-4xy + constant	:	
Ansv	ver:	(B)			<u>Clic</u>	<u>k here to watch v</u>	video explanati	<u>on</u>
32.	A uni	iform thin di	sk of mass 1 kg and	radius 0.1 m is	kept on a	a surface as show	wn in the figure	e. A spring
	stiffn	ess $k_1 = 400$	N/m is connected t	o the disk cente	er A and	another spring o	of stiffness k ₂	= 100 N/m
	conne	ected at poir	it B just above point	t A on the circu	umferenc	e of the disk. In	nitially, both th	e springs a

Assume pure rolling of the disk. For small disturbance from the equilibrium, the natural frequency of vibration of the system is _____ rad/s (round off to one decimal place).

Answer: (23.1)


<u>Click here to watch video explanation</u>

Answer:	(13)			re to watch video expl	
	%.			(. The strain at failure	in the sample i
	-		-	motion, at failure, ways. I. The strain at failure	
	-			n tension until failure.	
			00	· · · · · · · · · · · · · · · · · · ·	The failent les
Answer:	(A)		Click her	e to watch video explai	<u>nation</u>
(A)	4	(B) –4	(C) –3	(D) 3	
has i	infinite solutions, if	a =			
	-3y + az = 6				
	y + z = 1 - $ay + 3z = 5$				
	y + z = 1				
5. The	set of equations				
Answer:	(1)		Click he	re to watch video expl	anation
	cling of the beam is			perature rise require	
			ſ	emperature rise require	
The	beam has a square	e cross-section of si	de $\mathbf{p} = 6$ mm The Vo	ung's modulus E = 20)0 GPa and t
					
	3	>			
4. Con	sider a prismatic sti	aight beam of length	$L = \pi III$, pinned at the	two ends as shown in t	ine figure.
			.		
Answer:	(3.747)		Click he	re to watch video expl	anation
(in j	um, round off to one	e decimal place) of th	e generated surface is	·	
resp	ectively. The feed of	luring cylindrical tur	ning is 0.1 mm/rev. Th	e center line average su	urface roughne
3. In A	ASA system, the si	de cutting and end c	cutting edge angles of	a sharp turning tool a	are 45° and 10

ME, GATE-2019, SET-I

www.gateforum.com

37. A plane-strain compression (forging) of a block is shown in the figure. The strain in the z-direction is zero. The yield strength (S_y) in uniaxial tension/compression of the material of the block is 300 MPa and it follows the Tresca (maximum shear stress) criterion. Assume that the entire block has started yielding. At a point where $\sigma_x = 40$ MPa (compressive) and $\tau_{xy} = 0$, the stress component σ_y is

38. Match the following sand mold casting defects with their respective causes.

Defect		Cause
(P) Blow hole	1.	Poor collapsibility
(Q) Misrun	2.	Mold erosion
(R) Hot tearing	3.	Poor permeability
(S) Wash	4.	Insufficient fluidity

Codes:

Answer:

(A) P-3, Q-4, R-2, S-1

(B) P-4, Q-3, R-1, S-2

(C) P-2, Q-4, R-1, S-3

(D)

(D) P-3, Q-4, R-1, S-2

<u>Click here to watch video explanation</u>

ME, GATE-2019, SET-I

39. A steam power cycle with regeneration as shown below on the T-s diagram employs a single open feedwater heater for efficiency improvement. The fluids mix with each other in an open feedwater heater. The turbine is isentropic and the input (bleed) to the feedwater heater from the turbine is at state 2 as shown in the figure. Process 3-4 occurs in the condenser. The pump work is negligible. The input to the boiler is at state 5.

The following information is available from the steam tables:

State	1	2	3	4	5	6	
Enthalpy (kJ/kg)	3350	2800	2300	175	700	1000	
Т	5		$\frac{1}{2}$	~			

S

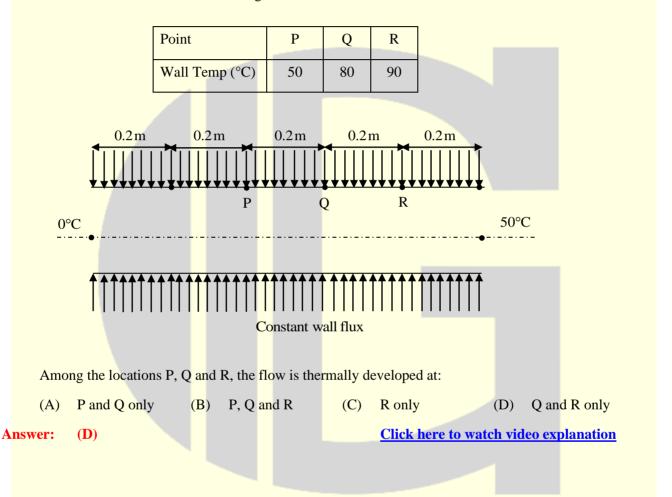
The mass flow rate of steam bled from the turbine as a percentage of the total mass flow rate at the inlet to the turbine at state 1 is _____

(20)**Answer:**

EGATEFORUM

Click here to watch video explanation

- **40.** The rotor of turbojet engine of an aircraft has a mass 180 kg and polar moment of inertia 10 kg.m² about the rotor axis. The rotor rotates at a constant speed of 1100 rad/s in the clockwise direction when viewed from the front of the aircraft. The aircraft while flying at a speed of 800 km per hour takes a turn with a radius of 1.5 km to the left. The gyroscopic moment exerted by the rotor on the aircraft structure and the direction of motion of the nose when the aircraft turns, are
 - (A) 1629.6 N.m and the nose goes up
- (B) 1629.6 N.m and the nose goes down
- (C) 162.9 N.m and the nose goes down


(D) 162.9 N.m and the nose goes up

Click here to watch video explanation

Answer: **(B)**

GATEFORUM ME, GATE-2019, SET-I

41. The wall of a constant diameter pipe of length 1 m is heated uniformly with flux q" by wrapping a heater coil around it. The flow at the inlet to the pipe is hydrodynamically fully developed. The fluid is incompressible and the flow is assumed to be laminar and steady all through the pipe. The bulk temperature of the fluid is equal to 0°C at the inlet and 50°C at the exit. The wall temperatures are measured at three locations, P, Q and R, as shown in the figure. The flow thermally develops after some distance from the inlet. The following measurements are made:

42. At a critical point in a component, the state of stress is given as $\sigma_{xx} = 100 \text{ MPa}$, $\sigma_{yy} = 220 \text{ MPa}$, $\sigma_{xy} = \sigma_{yx} = 80 \text{ MPa}$ and all other stress components are zero. The yield strength of the material is 468 MPa. The factor of safety on the basis of maximum shear stress theory is _____ (round off to one decimal place).

Answer: (1.8)

Click here to watch video explanation

<u>www.gateforum.c</u>	1E, GATE-2019, SET-I	uccess N	
0 when operating a	fluid has an isentropic efficiency of 0.70	turbine with air as the working	13. A ga
	atio of the turbine is increased to 5, while	-	-
ne specific work out	t gas with specific heat ratio $\gamma = 1.4$. If th	nditions. Assume air as a perfec	inlet
e pressure ratio of 5	e isentropic efficiency of the turbine at the	the same for both the cases, the	rema
L		round off to two decimal places).	
eo explanation	Click here to watch vide	0.51)	Answer:
_			
l places)	al is (round off to three decimal	ue of the following definite integ	4. The
		x)dx	° ∫(x
		,	1
eo explanation	Click here to watch vide	2.097)	Answer:
60 and for tool	used. For tool X, $n = 0.3$ and $C =$		oper
(in m/min, round of	ave the same tool life for the cutting speed		n = (
	ave the same tool life for the cutting speed Click here to watch vide	and $C = 90$. Both the tools will h	n = (
		and C = 90. Both the tools will h imal place) of	n = 0 one of
		and C = 90. Both the tools will h imal place) of	n = 0 one of
		and C = 90. Both the tools will h imal place) of	n = 0 one of
eo explanation		and C = 90. Both the tools will h imal place) of 40.5)	n = (one o
eo explanation	<u>Click here to watch vide</u>	and C = 90. Both the tools will h imal place) of 40.5)	n = (one o
eo explanation	<u>Click here to watch vide</u>	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o
eo explanation	<u>Click here to watch vide</u>	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o
eo explanation	<u>Click here to watch vide</u>	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o
eo explanation	Click here to watch vide the figure, $AB = 5$ cm, $AD = 4$ cm and DC	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o
eo explanation	Click here to watch vide the figure, $AB = 5$ cm, $AD = 4$ cm and DC	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o
eo explanation	Click here to watch vide the figure, $AB = 5$ cm, $AD = 4$ cm and DC	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o
eo explanation	Click here to watch vide the figure, $AB = 5$ cm, $AD = 4$ cm and DC	and C = 90. Both the tools will h imal place) of 40.5) r bar planar mechanism shown in	n = (one o

	gineering S				IE, GAT	E-2019	, SET-I	www.gateforum.co
]	In the c	onfiguration show	vn, bo	th AB and	DC are	perpen	dicular	to AD. The bar AB rotates with an angu
,	velocity	of 10 rad/s. The	magn	itude of an	gular ve	elocity (in rad/s	s) of bar DC at this instant is
((A) 2	.5	(B)	15		(C)	10	(D) 0
Answe	e r: (.	A)					<u>Click</u>	there to watch video explanation
47.]	If one n	nole of H ₂ gas oc	cunies	a rigid co	ntainer	with a c	anacity	of 1000 liters and the temperature is rais
		-	-	÷				d gas (round off to two decimal place
		ng ideal gas behav		· ·				
Answe		83.14)	Í		×			here to watch video explanation
							Chen	incre to watch video explanation
48.	Three s	slabs are joined	togeth	er as shov	vn in tl	ne figur	e. The	re is no thermal contact resistance at t
i	interfac	es. The center sla	ab exp	erience a r	non-unit	form int	ernal h	eat generation with an average value equ
t	to 1000	0 Wm ⁻³ , while th	e left a	and right sl	labs hav	ve no int	ernal h	eat generation.
		I Cont						
		Left extreme face $T_1 = 100^\circ$	c 🗕	1		1		T_2
				1m		1m		1m -2
		100W/m^2	к					$100 \text{ W/m}^2.\text{K}$
		30°C						30°C
		Ĩ						
		I						
	All slał	os have thickness	equal	to 1 m an	d therm	al cond	uctivity	y of each slab is equal to 5 $Wm^{-1} K^{-1}$. T
			•				-	ficient 100 Wm ⁻² K ⁻¹ and bulk temperatu
t			-					be one dimensional and steady, and
	30°C a			ister m ti	le sidos			•
				eft extrem	e face to	emperat	nre L ₁	is measured to be 100°C the right extrem
1	propert	ies are constant. I	f the l		e face to	emperat	ure I ₁	is measured to be 100°C, the right extrem
1	propert		f the l		e face to	emperat		is measured to be 100°C, the right extremed to be 100°C, the right extremes the second s

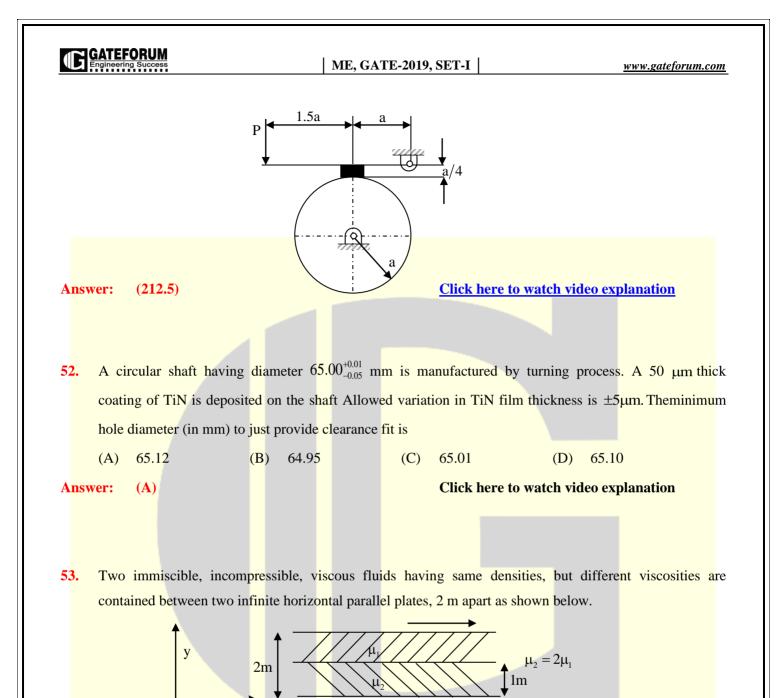
ME, GATE-2019, SET-I

www.gateforum.com

49. Five jobs (J₁, J₂, J₃, J₄ and J₅) need to be processed in a factory. Each job can be assigned to any of the five different machines (M₁, M₂, M₃, M₄ and M₅). The time duration taken (in minutes) by the machines for each of the jobs, are given in the table. However, each job is assigned to a specific machine in such a way that the total processing time is minimum. The total processing time is _____ minutes.

	M ₁	M ₂	M ₃	M_4	M ₅	
J ₁	40	30	50	50	58	
J ₂	269	38	60	26	38	
J ₃	40	34	28	24	30	
\mathbf{J}_4	28	40	40	32	48	
J_5	28	32	38	22	44	

Answer: (146)


EGATEFORUM

<u>Click here to watch video explanation</u>

50. In orthogonal turning of a cylindrical tube of wall thickness 5mm, the axial and the tangential cutting forces were measured at 1259 N and 1601 N, respectively. The measured chip thickness after machining was found to be 0.3 mm. The rake angel was 10° and the axial feed was 100 mm/min. The rotational speed of the spindle was 1000 rpm. Assuming the material to be perfectly plastic and Merchant's first solution, the shear strength of the martial is closest to

(A)	722 MPa	(B)	875 MPa	(C)	200 MPa	(D)	920 MPa
Answer:	(A)				Click here to wat	ch vid	leo explanation

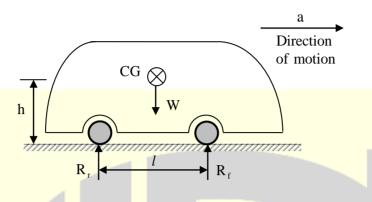
51. A single block brake with a short shoe and torque capacity of 250 N-m is shown. The cylindrical brake drum rotates anticlockwise at 100 rpm and the coefficient of friction is 0.25. The value of a, in mm (round off to one decimal place), such that the maximum actuating force P is 2000 N, is _____.

The bottom plate is fixed and the upper plate moves to the right with a constant velocity of 3 m/s. With the assumptions of Newtonian fluid, steady, and fully developed laminar flow with zero pressure gradient in all directions, the momentum equations simplify to

$$\frac{\mathrm{d}^2 \mathrm{u}}{\mathrm{d} \mathrm{y}^2} = 0.$$

x

If the dynamic viscosity of the lower fluid, μ_2 , is twice that of the upper fluid, μ_1 , then the velocity at the interface (round off to two decimal places) is _____ m/s.


Answer: (1)

<u>Click here to watch video explanation</u>

| ME, GATE-2019, SET-I |

www.gateforum.com

54. A car having weight W is moving in the direction as shown in the figure. The centre of gravity (CG) of the car is located at height h from the ground, midway between the front and rear wheels.

The distance between the front and rear wheels is ℓ . The acceleration of the car is a, and acceleration due to gravity is g. The reactions on the front wheels (R_f) and rear wheels (R_r) are given by

(A)	$R_{f} = R_{r} = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a$
(B)	$R_{f} = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a; R_{r} = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a$
(C)	$R_{f} = R_{r} = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a$
(D)	$R_{f} = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a; R_{r} = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a$
ver:	(D)

Answer:

GATEFORUM

Click here to watch video explanation

55. The variable x takes a value between 0 and 10 with uniform probability distribution. The variable y takes a value between 0 and 20 with uniform probability distribution. The probability of the sum of variables (x + y) being greater than 20 is

 (A) 0.33
 (B) 0.50
 (C) 0.25
 (D) 0

 Answer:
 (C)
 Click here to watch video explanation