

1F

Join discussion of this test paper at http://forum.gatementor.com

Q.1 – Q.30 Carry One Mark Each

1. The minimum number of equations required to analyze the circuit shown in Fig.Q.1 is $$\rm C$-C$

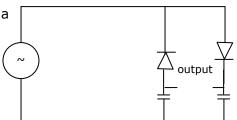
- 2. A source of angular frequency 1 rad/sec has a source impedance consisting of 1Ω resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is
 - (a) 1Ω resistance
 - (b) 1Ω resistance in parallel with 1 H inductance
 - (c) 1Ω resistance in series with 1 F capacitor
 - (d) 1Ω resistance in parallel with 1 F capacitor
- 3. A series RLC circuit has a resonance frequency of 1 kHz and a quality factor Q = 100. If each R, L and C is doubled from its original value, the new Q of the circuit is

(a) 25 (b) 50 (c) 100 (d) 200

4. The Laplace transform of i(t) is given by $I(s) = \frac{2}{s(1+s)}$

As t $\rightarrow \infty$, the value of i(t) tends to (a) 0 (b) 1 (c) 2 (d) ∞

5. The differential equation for the current i(t) in the circuit of Figure Q.5 is


(a)
$$2\frac{d^{2}i}{dt^{2}} + 2\frac{di}{dt} + i(t) = \sin t$$

(b)
$$\frac{d^{2}i}{dt^{2}} + 2\frac{di}{dt} + 2i(t) = \cos t$$

(c)
$$2\frac{d^{2}i}{dt^{2}} + 2\frac{di}{dt} + i(t) = \cos t$$

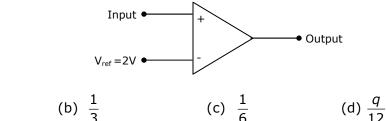
(d)
$$\frac{d^{2}i}{dt^{2}} + 2\frac{di}{dt} + 2i(t) = \sin t$$

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

visit <u>www.gateforum.com</u> Think GATE Think GATE Forum

GA		GATE EC - 2003			w.gateforum.com
7 en		oin discussion of this test pap	per at	http://forum.g	atementor.com
6.	n-type silicon is obtained by doping silicon with				
	(a) Germanium	(b) Aluminum	(c)	Boron	(d) Phosphorus
7.	The bandgap of s	ilicon at 300 K is			
	(a) 1.36 eV	(b) 1.10 eV	(c)	0.80 eV	(d) 0.67 eV
8.	The intrinsic carrier concentration of silicon sample of 300 K is 1.5×10^{16} /m ³ . after doping, the number of majority carriers is 5×10^{20} /m ³ , the minority carr density is			K is 1.5×10^{16} /m ³ . If the minority carrier	
	(a) 4.50×10^{11} /n	1 ³	(b)	$3.33 imes10^4/m$	n ³
	(c) $5.00 \times 10^{20}/n$	1 ³	(d)	3.00 × 10 ⁻⁵ /	m ³
9.	Choose proper substitutes for X and Y to make the following statement corr Tunnel diode and Avalanche photodiode are operated in X bias and Y b respectively.			-	
	(a) X: reverse, Y	: reverse	(b)	X: reverse,	Y: forward
	(c) X: forward, Y	: reverse	(d)	X: forward,	Y: forward
10.	For an n-channe higher potential t the MOSFET will	l enhancement type MO han that of the bulk (i.e	SFET 2. V _{SB}	, if the sour > 0), the th	ce is connected at a reshold voltage $V_{\rm T}$ of
	(a) remain uncha	anged	(b)	decrease	
	(c) change polar	ity	(d)	increase	
11.	Choose the corre shown below.	ct match for input resist	ance	of various an	nplifier configurations
		Configuration	Ir	nput resistanc	e
		CB: Common Base	L	D: Low	
		CC: Common Collector	· M	O: Moderate	
		CE: Common Emitter		I: High	
	(a) CB-LO, CC-M			CB-LO, CC-H	HI, CE-MO
	(c) CB-MO, CC-H	-	. ,	CB-HI, CC-L	
12.	The circuit shown (a) bridge rectifie	in figure is best describe er	ed as	a	

- (b) ring modulator
- (c) frequency discriminatory
- (d) voltage doubler


Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

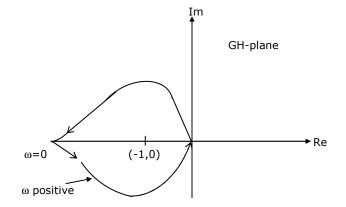
(a) $\frac{1}{2}$

Join discussion of this test paper at http://forum.gatementor.com

13. If the input to the ideal comparator shown in figure is a sinusoidal signal of 8V (peak to peak) without any DC component, then the output of the comparator has a duty cycle of

- 14. If the differential voltage gain and the common mode voltage gain of a differential amplifier are 48 dB and 2 dB respectively, then its common mode rejection ratio is
 - (a) 23 dB (b) 25 dB (c) 46 dB (d) 50 dB
- 15. Generally, the gain of a transistor amplifier falls at high frequencies due to the
 - (a) internal capacitances of the device
 - (b) coupling capacitor at the input
 - (c) skin effect
 - (d) coupling capacitor at the output
- 16.The number of distinct Boolean expression of 4 variables is(a) 16(b) 256(c) 1024(d) 65536
- 17.The minimum number of comparators required to build an 8 it flash ADC is(a) 8(b) 63(c) 255(d) 256
- 18. The output of the 74 series of TTL gates is taken from a BJT in
 - (a) totem pole and common collector configuration
 - (b) either totem pole or open collector configuration
 - (c) common base configuration
 - (d) common collector configuration
- 19. Without any additional circuitry, an 8:1 MUX can be used to obtain
 - (a) some but not all Boolean functions of 3 variables
 - (b) all function of 3 variables but none of 4 variables
 - (c) all functions of 3 variables and some but not all of 4 variables
 - (d) all functions of 4 variables

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit



- 20. A 0 to 6 counter consists of 3 flip flops and a combination circuit of 2 input gate(s). The combination circuit consists of
 - (a) one AND gate (b) one OR gate
 - (c) one AND gate and one OR gate (d) two AND gates
- 21. The Fourier series expansion of a real periodic signal with fundamental frequency f_0 is given by $g_p(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_0 t}$ it is given that $C_3 = 3 + j5$. Then C_{-3} is (a) 5+j3 (b) -3-j5 (c) -5+j3 (d) 3-j5
- 22. Let x(t) be the input to a linear, time-invariant system. The required output is 4x(t-2). The transfer function of the system should be
 - (a) $4e^{j4\pi f}$ (b) $2e^{-j8\pi f}$ (c) $4e^{-j4\pi f}$ (d) $2e^{j8\pi f}$
- 23. A sequence x(n) with the z-transform X(z) = $z^4 + z^2 2z + 2 3z^{-4}$ is applied as an input to a linear, time-invariant system with the impulse response h(n) = $2\delta(n-3)$ where

$$\delta(n) = \begin{cases} 1, n = 0 \\ 0, \text{ otherwise} \end{cases}$$
The output at n = 4 is
(a) -6
(b) zero
(c) 2
(d) -4

24. Figure shows the Nyquist plot of the open-loop transfer function G(s)H(s) of a system. If G(s)H(s) has one right hand pole, the closed loop system is

- (a) always stable
- (b) unstable with one closed loop right hand pole
- (c) unstable with two closed loop right hand poles
- (d) unstable with three closed loop right hand poles

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

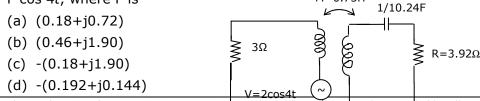
- 25. A PD controller is used to compensate a system. Compared to the uncompensated system, the compensated system has
 - (a) a higher type number
- (b) reduced damping

(d) the envelope

- (c) higher noise amplification (d) larger transient overshoot
- 26. The input to a coherent detector is DSB-SC signal plus noise. The noise at the detector output is
 - (a) the in-phase component (b) the quadrature-component
 - (c) zero
- 27. The noise at the input to an ideal frequency detector is white. The detector is operating above threshold. The power spectral density of the noise at the output is
 - (a) raised cosine (b) flat (c) parabolic (d) Gaussian
- 28. At a given probability of error, binary coherent FSK is inferior to binary coherent PSK by
 - (a) 6 dB

- (c) 2 dB (d) 0 dB
- 29. The unit of $\nabla \times H$ is
 - (a) Ampere (b) Ampere/meter

(b) 3 dB

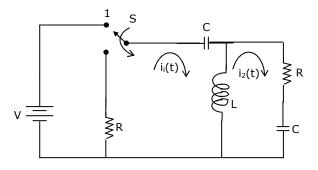

- (c) Ampere/meter² (d) Ampere-meter
- 30. The depth of penetration of electromagnetic wave in a medium having conductivity σ at a frequency of 1 MHz is 25 cm. The depth of penetration at a frequency of 4 MHz will be
 - (a) 6.25 cm (b) 12.50 cm (c) 50.00 cm (d) 100.00 cm

Q.31 – Q.90 Carry Two Marks Each

31. Twelve 1Ω resistances are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is

(a)
$$\frac{5}{6}\Omega$$
 (b) $\frac{1}{6}\Omega$ (c) $\frac{6}{5}\Omega$ (d) $\frac{3}{2}\Omega$

32. The current flowing through the resistance R in the circuit in figure has the form $P \cos 4t$, where P is M=0.75H



Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

The circuit for **Q.33-34** is given in figure. For both the questions, assume that the switch S is in position 1 for a long time and thrown to position 2 at t = 0.

33. At t = 0⁺, the current i₁ is
(a)
$$\frac{-V}{2R}$$
 (b) $\frac{-V}{R}$ (c) $\frac{-V}{4R}$ (d) zero

34. $I_1(s)$ and $I_2(s)$ are the Laplace transforms of $i_1(t)$ and $i_2(t)$ respectively. The equations for the loop currents $I_1(s)$ and $I_2(s)$ for the circuit shown in figure Q.33-34, after the switch is brought from position 1 to position 2 at t = 0, are

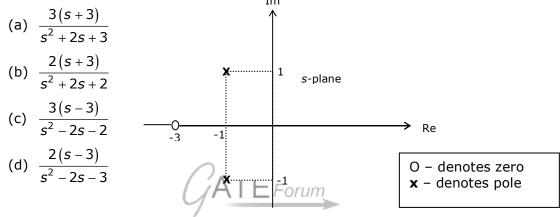
(a)
$$\begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} \frac{V}{s} \\ 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s} \\ 0 \end{bmatrix}$$

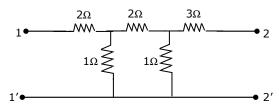
(c)
$$\begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + Ls + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} \frac{V}{s} \\ 0 \end{bmatrix}$$

(d)
$$\begin{bmatrix} R + Ls + \frac{1}{Cs} & -Ls \\ -Ls & R + Ls + \frac{1}{Cs} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -\frac{V}{s} \\ 0 \end{bmatrix}$$

35. An input voltage v(t) = $10\sqrt{2}\cos(t+10^\circ)+10\sqrt{3}\cos(2t+10^\circ)V$ is applied to a series combination of resistance R = 1Ω and an inductance L = 1H. The resulting steady state current i(t) in ampere is


Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

- (a) $10\cos(t+55^\circ)+10\cos(2t+10^\circ+\tan^{-1}2)$
- (b) $10\cos(t+55^\circ)+10\sqrt{\frac{3}{2}}\cos(2t+55^\circ)$
- (c) $10\cos(t-35^\circ)+10\cos(2t+10^\circ-\tan^{-1}2)$


(d)
$$10\cos(t-35^\circ)+10\sqrt{\frac{3}{2}}\cos(2t-35^\circ)$$

36. The driving point impedance Z(s) of a network has the pole-zero locations as shown in figure. If Z(0) = 3, then Z(s) is

37. The impedance parameters Z_{11} and Z_{12} of the two-port network in figure are

- (a) $Z_{11} = 2.75\Omega$ and $Z_{12} = 0.25\Omega$
- (b) $Z_{11} = 3\Omega$ and $Z_{12} = 0.5\Omega$
- (c) $Z_{11} = 3\Omega$ and $Z_{12} = 0.25\Omega$
- (d) $Z_{11} = 2.25\Omega$ and $Z_{12} = 0.5\Omega$

38. An *n*-type silicon bar 0.1 cm long and μ m² in cross-sectional area has a majority carrier concentration of 5 × 10²⁰/m³ and the carrier mobility is 0.13m²/V-s at 300K. if the charge of an electron is 1.6×10⁻¹⁹ coulomb, then the resistance of the bar is

(a)
$$10^6$$
 ohm (b) 10^4 ohm (c) 10^{-1} ohm (d) 10^{-4} ohm

- 39. The electron concentration in a sample of uniformly doped n-type silicon at 300 K varies linearly from 10^{17} /cm³ at x = 0 to 6 × 10^{16} /cm³ at x = 2µm. Assume a situation that electrons are supplied to keep this concentration gradient constant with time. If electronic charge is 1.6×10^{-19} coulomb and the diffusion constant $D_n = 35 \text{ cm}^2$ /s, the current density in the silicon, if no electric field is present, is
 - (a) zero (b) -112 A/cm^2 (c) $+1120 \text{ A/cm}^2$ (d) -1112 A/cm^2

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

40. Match items in Group 1 with items in Group 2, most suitably.

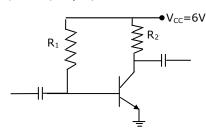
Group 1		Group 2	
P LED	1	Heavy doping	
Q Avalanche pl	hotodiode 2	Coherent radiation	
R Tunnel diode	e 3	Spontaneous emission	
S LASER	4	Current gain	
(a) P - 1 Q - 2 R - 4 S -	- 3	(b) P - 2 Q - 3 R - 1 S - 4	
(c) P - 3 Q - 4 R - 1 S -	- 2	(d) P - 2 Q - 1 R - 4 S - 3	

41. At 300 K, for a diode current of 1 mA, a certain germanium diode requires a forward bias of 0.1435V, whereas a certain silicon diode requires a forward bias of 0.718V. Under the conditions stated above, the closest approximation of the ratio of reverse saturation current in germanium diode to that in silicon diode is

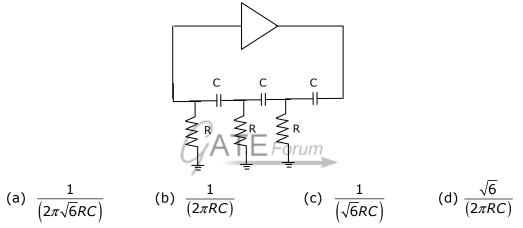
(a) 1 (b) 5 (c) 4×10^3 (d) 8×10^3

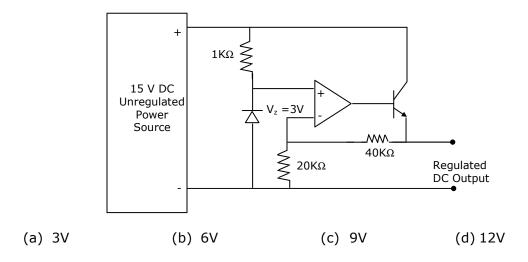
42. A particular green LED emits light of wavelength 5490°A. The energy bandgap of the semiconductor material used there is (Planck's constant = 6.626×10^{-34} J-s) (a) 2.26 eV (b) 1.98 eV (c) 1.17 eV (d) 0.74 eV

- 43. When the gate-to-source voltage (V_{GS}) of a MOSFET with threshold voltage of 400mV, working in saturation is 900 mV, the drain current in observed to be 1 mA. Neglecting the channel width modulation effect and assuming that the MOSFET is operating at saturation, the drain current for an applied V_{GS} of 1400 mV is
 - (a) 0.5 mA (b) 2.0 mA (c) 3.5 mA (d) 4.0 mA
- 44. If P is Passivation, Q is n-well implant, R is metallization and S is soruce/drain diffusion, then the order in which they are carried out in a standard *n*-well CMOS fabrication process, is


(a) P-Q-R-S (b) Q-S-R-P (c) R-P-S-Q (d) S-R-Q-P

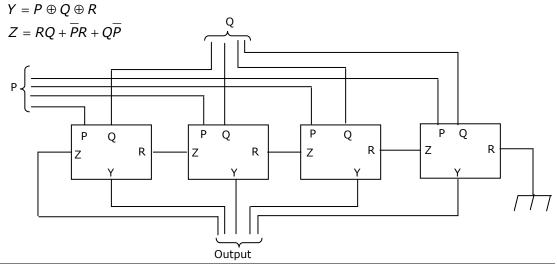
- 45. An amplifier without feedback has a voltage gain of 50, input resistance of 1 K Ω and output resistance of 2.5 K Ω . The input resistance of the current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2, is
 - (a) $\frac{1}{11}K\Omega$ (b) $\frac{1}{5}K\Omega$ (c) $5 K\Omega$ (d) $11 K\Omega$


Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit


- 46. In the amplifier circuit shown in figure, the values of R₁ and R₂ are such that the transistor is operating at V_{CE}= 3V and I_C = 1.5mA when its β is 150. For a transistor with β of 200, the operating point (V_{CE}, I_C) is
 - (a) (2V, 2 mA)
 - (b) (3V, 2 mA)
 - (c) (4V, 2 mA)
 - (d) (4V, 1 mA)

47. The oscillator circuit shown in figure has an ideal inverting amplifier. Its frequency of oscillation (in Hz) is

48. The output voltage of the regulated power supply shown in figure is


Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

- 49. The action of a JFET in its equivalent circuit can best be represented as a
 - (a) Current Controlled Current Source
 - (b) Current Controlled Voltage Source
 - (c) Voltage Controlled Voltage Source
 - (d) Voltage Controlled Current Source
- 50. If the op-amp in figure is ideal, the output voltage V_{out} will be equal to
 - (a) 1V
 - (b) 6V
 - (c) 14V
 - (d) 17V

- 51. Three identical amplifiers with each one having a voltage gain of 50, input resistance of 1 K Ω and output resistance of 250 Ω , are cascaded. The open circuit voltage gain of the combined amplifier is
 - (a) 49 dB (b) 51 dB (c) 98 dB (d) 102 dB
- 52. An ideal sawtooth voltage waveform of frequency 500 Hz and amplitude 3V is generated by charging a capacitor of 2 μ F in every cycle. The charging requires
 - (a) constant voltage source of 3 V for 1 ms
 - (b) constant voltage source of 3 V for 2 ms
 - (c) constant current source of 3 mA for 1 ms
 - (d) constant current source of 3 mA for 2 ms
- 53. The circuit shown in figure has 4 boxes each described by inputs P, Q, R and outputs Y, Z with

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

www.gateforum.com

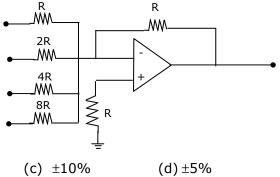
Join discussion of this test paper at http://forum.gatementor.com

- The circuit acts as a
- (a) 4 bit adder giving P + Q

(b) 4 bit subtractor-giving P - Q

(c) 4 bit subtractor-giving Q - P

(d) 4 bit adder giving P + Q + R


- 54. If the functions W, X, Y and Z are as follows $W = R + \overline{P}O + \overline{R}S$ $X = PQ\overline{R} \ \overline{S} + \overline{P} \ \overline{Q} \ \overline{R} \ \overline{S} + P \ \overline{Q} \ \overline{R} \ \overline{S}$ $Y = RS + \overline{PR + P\overline{Q}} + \overline{P}.\overline{Q}$ $Z = R + S + \overline{PQ + \overline{P}.\overline{Q}.\overline{R} + P\overline{Q}.\overline{S}}$ Then (a) $W = Z, X = \overline{Z}$ (b) W = Z, X = Y (c) W = Y (d) $W = Y = \overline{Z}$
- 55. A 4 bit ripple counter and a 4 bit synchronous counter are made using flip-flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then

(c)
$$R = 10 \text{ ns}, S = 30 \text{ ns}$$

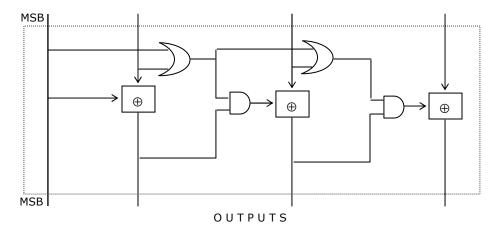
- (b) R = 40 ns, S = 10 ns
- (d) R = 30 ns, S = 10 ns
- 56. The DTL, TTL, ECL and CMOS families of digital ICs are compared in the following 4 columns

		(P)	(Q)	(R)	(S)
	Fanout is minimum	DTL	DTL	TTL	CMOS
	Power consumption is minimum	TTL	CMOS	ECL	DTL
	Propagation delay is minimum		ECL	TTL	TTL
The correct column is					
(a) P	(b) Q	(c) R		(d) S

57. The circuit shown in figure is a 4-bit DAC The input bits 0 and 1 are represented by 0 and 5 V respectively. The OP AMP is ideal, but all the resistances and the 5V inputs have a tolerance of $\pm 10\%$. The specification (rounded to the nearest multiple of 5%) for the tolerance of the DAC is (a) ±35%

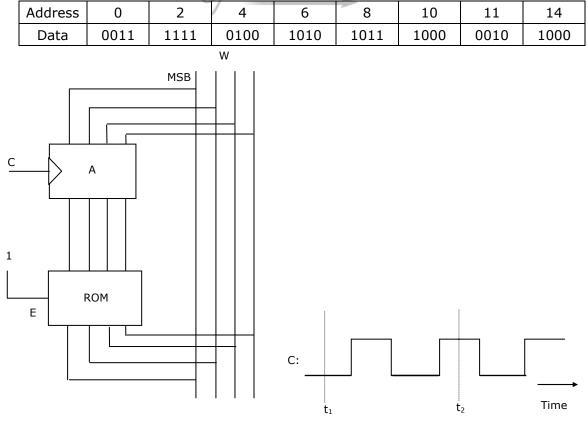
Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

(b) ±20%



GATE EC - 2003

Join discussion of this test paper at http://forum.gatementor.com


58. The circuit shown in figure converts

(a) BCD to binary code

- (b) Binary to excess 3 code
- (c) Excess 3 to Gray code
- (d) Gray to Binary code
- 59. In the circuit shown in Figure, A is a parallel in, parallel-out 4-bit register, which loads at the rising edge of the clock C. The input lines are connected to a 4-bit bus, W. Its output acts as the input to a 16×4 ROM whose output is floating when the enable input E is 0. A partial table of the contents of the ROM is as follows

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

The clock to the register is shown, and the data on the W bus at time $t_1 \mbox{ is } 0110. \label{eq:theta}$ The data on the bus at time $t_2 \mbox{ is }$

- (a) 1111 (b) 1011 (c) 1000 (d) 0010
- 60. In an 8085 microprocessor, the instruction CMP B has been executed while the content of the accumulator is less than that of register B. As a result
 - (a) Carry flag will be set but Zero flag will be reset
 - (b) Carry flag will be reset but Zero flag will be set
 - (c) Both Carry flag and Zero flag will be reset
 - (d) Both Carry flag and Zero flag will be set
- 61. Let X and Y be two statistically independent random variables uniformly distributed in the ranges (-1,1) and (-2,1) respectively. Let Z = X + Y. then the probability that [Z \leq -2] is
 - (a) zero (b) $\frac{1}{6}$ (c) $\frac{1}{3}$ (d) $\frac{1}{12}$
- 62. Let P be linearity, Q be time-invariance, R be causality and S be stability. A discrete time system has the input-output relationship,

$$y(n) = \begin{cases} x(n), & n \ge 1 \\ 0, & n = 0 \\ x(n+1), & n \le -1 \end{cases}$$

where x(n) is the input and y(n) is the output. The above system has the properties

(a) P, S but not Q, R	(b) P, Q, S but not R
(c) P, Q, R, S	(d) Q, R, S but not P

Data for **Q.63-64** are given below. Solve the problems and choose the correct answers. The system under consideration is an RC low-pass filter (RC-LPF) with R = 1.0 k Ω and C = 1.0 μ F.

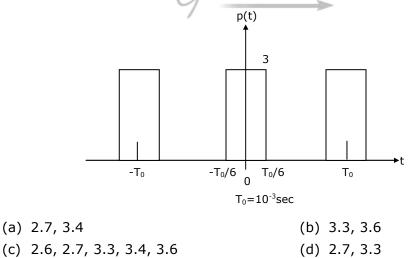
- 63. Let H(*f*) denote the frequency response of the RC-LPF. Let f_1 be the highest frequency such that $0 \le |f| \le f_1, \frac{|H(f_1)|}{H(0)} \ge 0.95$. Then f_1 (in Hz) is (a) 327.8 (b) 163.9 (c) 52.2 (d) 104.4
- 64. Let $t_g(f)$ be the group delay function of the given RC-LPF and $f_2 = 100$ Hz. Then $t_g(f_2)$ in ms, is (a) 0.717 (b) 7.17 (c) 71.7 (d) 4.505

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

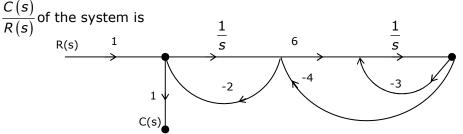
GATE EC - 2003

www.gateforum.com

Join discussion of this test paper at http://forum.gatementor.com


Data for ${\bf Q.65}$ – ${\bf 66}$ are given below. Solve the problems and choose the correct answers.

X(t) is a random process with a constant mean value of 2 and the autocorrelation function $R_x(\tau) = 4\left[e^{-0.2|\tau|} + 1\right]$.


65. Let X be the Gaussian random variable obtained by sampling the process at t = t_i and let $Q(\alpha) = \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy$.

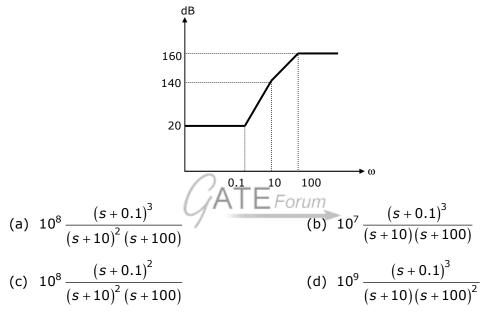
The probability that $[x \le 1]$ is

- (a) 1 Q(0.5) (b) Q(0.5) (c) $Q\left(\frac{1}{2\sqrt{2}}\right)$ (d) $1 Q\left(\frac{1}{2\sqrt{2}}\right)$
- 66. Let Y and Z be the random variables obtained by sampling X(t) at t =2 and t = 4 respectively. Let W = Y Z. The variance of W is
 - (a) 13.36 (b) 9.36 (c) 2.64 (d) 8.00
- 67. Let $x(t) = 2\cos(800\pi t) + \cos(1400\pi t)$. x(t) is sampled with the rectangular pulse train shown in figure. The only spectral components (in kHz) present in the sampled signal in the frequency range 2.5 kHz to 3.5 kHz are

68. The signal flow graph of a system is shown in figure. The transfer function C(s)

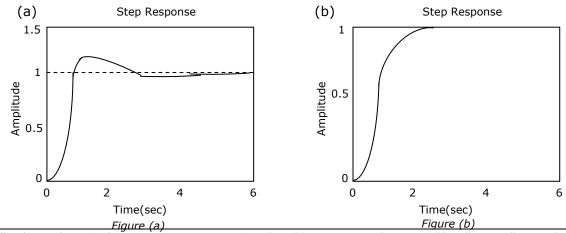
Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

GATE EC - 2003

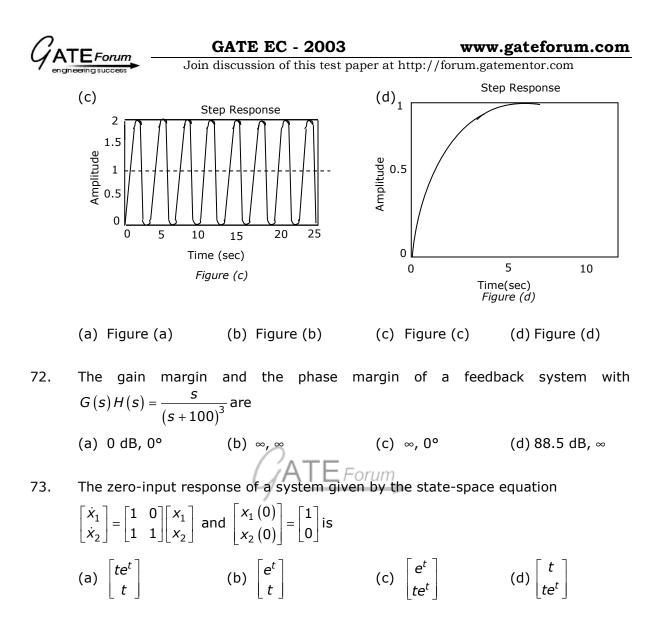

Join discussion of this test paper at http://forum.gatementor.com

(a)
$$\frac{6}{s^2 + 29s + 6}$$
 (b) $\frac{6s}{s^2 + 29s + 6}$ (c) $\frac{s(s+2)}{s^2 + 29s + 6}$ (d) $\frac{s(s+27)}{s^2 + 29s + 6}$

69. The root locus of the system $G(s)H(s) = \frac{K}{s(s+2)(s+3)}$ has the break-away point


located at

- (a) (-0.5,0) (b) (-2.548,0) (c) (-4,0) (d) (-0.784,0)
- 70. The approximate Bode magnitude plot of a minimum-phase system is shown in figure. The transfer function of the system is



71. A second-order system has the transfer function $\frac{C(s)}{R(s)} = \frac{4}{s^2 + 4s + 4}$.

with r(t) as the unit-step function, the response c(t) of the system is represented by

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

74. A DSB-SC signal is to be generated with a carrier frequency $f_c = 1$ MHz using a nonlinear device with the input-output characteristic

 $\boldsymbol{v}_0 = \boldsymbol{a}_0 \boldsymbol{v}_i + \boldsymbol{a}_1 \boldsymbol{v}_i^3$

where a_0 and a_1 are constants. The output of the nonlinear device can be filtered by an appropriate band-pass filter.

Let $v_i = A'_c \cos(2\pi f'_c t) + m(t)$ where m(t) is the message signal. Then the value of f'_c (in MHz) is

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

GATE EC - 2003 www.gateforu
Join discussion of this test paper at http://forum.gatementor.com

The data for Q.75 – 76 are given below. Solve the problems and choose the correct answers.

- Let $m(t) = \cos\left[\left(4\pi \times 10^3\right)t\right]$ be the message signal and $c(t) = 5\cos\left[\left(2\pi \times 10^6\right)t\right]$ be the carrier.
- 75. c(t) and m(t) are used to generate an AM signal. The modulation index of the generated AM signal is 0.5. Then the quantity $\frac{\text{Total sideband power}}{\text{Carrier power}}$ is
 - (c) $\frac{1}{3}$ (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (d) $\frac{1}{8}$
- 76. c(t) and m(t) are used to generate an FM signal. If the peak frequency deviation of the generated FM signal is three times the transmission bandwidth of the AM singal, then the coefficient of the term $\cos \left[2\pi (1008 \times 10^3 t) \right]$ in the FM signal (in terms of the Bessel coefficients) is

(a)
$$5J_4(3)$$
 (b) $\frac{5}{2}J_8(3)$ (c) $\frac{5}{2}J_8(4)$ (d) $5J_4(6)$

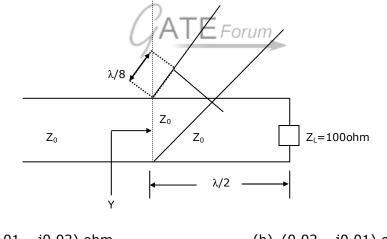
Choose the correct one from among the alternatives A, B, C, D after matching an 77. item in Group 1 with the most appropriate item in Group 2.

Group 1	Group 2
P Ring modulator	1 Clock recovery
Q VCO	2 Demodulation of FM
R Foster-Seely discriminator	3 Frequency conversion
S Mixer	4 Summing the two inputs
	5 Generation of FM
	6 Generation of DSB-Sc
(a) P – 1 Q – 3 R – 2 S – 4	(b) P - 6 Q - 5 R - 2 S - 3
(c) P-6 Q-1 R-3 S-2	(d) P - 5 Q - 6 R - 1 S - 3

A superheterodyne receiver is to operate in the frequency range 550 kHz - 1650 78. kHz, with the intermediate frequency of 450 kHz. Let R = $\frac{C_{\text{max}}}{C_{\text{min}}}$ denote the required capacitance ratio of the local oscillator and I denote the image frequency (in kHz) of the incoming signal. If the receiver is tuned to 700 kHz, then

- (a) R = 4.41, I = 1600 (b) R = 2.10, I = 1150
- (c) R = 3.0, I = 1600(d) R = 9.0, I = 1150

Join All India Mock GATE Classroom Test Series - 2007 conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details, visit

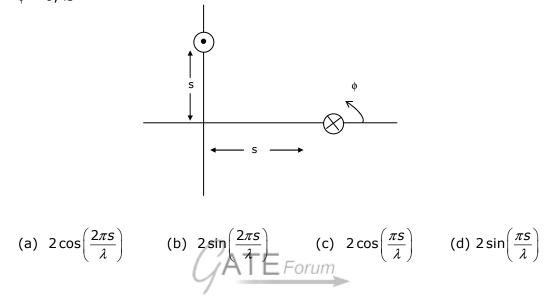

C	TEram	GATE EC - 2003	ww	w.gateforum.com
		in discussion of this test p	paper at http://forum.g	atementor.com
79.		l with peak-to-peak an I-rise uniform quantize		
	(a) 0.768 V	(b) $48 \times 10^{-6} V^2$	(c) $12 \times 10^{-6} V^2$	(d) 3.072 V
80.	If E _b , the energy sided power spec SNR of the match	per bit of a binary dig tral density of the whit ed filter is	gital signal, is 10^{-6} w we noise, N ₀ = 10^{-5} W	vatt-sec and the one- //Hz, then the output
	(a) 26 dB	(b) 10 dB	(c) 20 dB	(d) 13 dB
81.	The input to a linear delta modulator having a step-size $\triangle = 0.628$ is a sine wave with frequency f_m and peak amplitude E_m . If the sampling frequency $f_s = 40$ kHz, the combination of the sine-wave frequency and the peak amplitude, where slope overload will take place is			equency $f_s = 40 \text{ kHz}$,
	Em	f _m		
	(a) 0.3 V	8 kHz		
	(b) 1.5 V	4 kHz		
	(c) 1.5 V	2 kHz		
	(d) 3.0 V	1 kHz		
		\sim		
82. If S represents the carrier synchronization at the receiver and ρ represented bandwidth efficiency, then the correct statement for the coherent binary			and ρ represents the erent binary PSK is	
	(a) ρ = 0.5, S is	required	(b) ρ = 1.0, S is	required
	(c) $\rho = 0.5$, S is	-	(d) $\rho = 1.0$, S is	•
83.	A signal is sampled at 8 kHz and is quantized using 8-bit uniform quantized Assuming SNR _q for a sinusoidal signal, the correct statement for PCM signal wit a bit rate of R is			•
	(a) R = 32 kbps,	SNR₀ = 25.8 dB	(b) R = 64 kbps	s, SNR _a = 49.8 dB
	(c) R = 64 kbps,		., .	, SNR _q = 49.8 dB
84.	Medium 1 has the electrical permitivity $\varepsilon_1 = 1.5 \varepsilon_0$ farad/m and occupies the region to the left of x = 0 plane. Medium 2 has the electrical permitivity $\varepsilon_2 = 2.5 \varepsilon_0$ farad/m and occupies the region to the right of x = 0 plane. If E ₁ in medium 1 is $E_1 = (2u_x - 3u_y + 1u_z)$ volt/m, then E ₂ in medium 2 is			
	(a) (2.0 <i>u_x</i> – 7.5 <i>u</i> _y	$(+2.5u_z)$ volt/m	(b) $(2.0u_x - 2.0u_x)$	$u_y + 0.6u_z$)volt/m
	(c) $(1.2u_x - 3.0u_y)$	$(+1.0u_z)$ volt/m	(d) $(1.2u_x - 2.0u_x)$	$u_y + 0.6u_z$) volt/m
85.		d intensity is given by n X(20,0) and Y(1,2,3)	, , ,	volt/m, the potential
Papers	including section tests and fu	om Test Series - 2007 conduct ill tests are designed by IISc alum	ini according to the latest sylla	
interact	tion with IISc alumni in our o	nline discussion forums, and mor visit	re. For more details,	
		www.aateforu	Im com	

GATE FORM	GATE EC - 2003	www.gateforum.com
	Join discussion of this test paper at ht	ttp://forum.gatementor.com

- (a) +1 volt (b) -1 volt (c) +5 volt (d) +6 volt
- 86. A uniform plane wave traveling in air is incident on the plane boundary between air and another dielectric medium with $\varepsilon_r = 4$. The reflection coefficient for the normal incidence, is
 - (a) zero (b) 0.5∠180° (c) 0.333∠0° (d) 0.333∠180°
- 87. If the electric field intensity associated with a uniform plane electromagnetic wave traveling in a perfect dielectric medium is give by

 $E(z,t) = 10 \cos(2\pi \times 10^7 t = 0.1\pi z)$ volt/m, then the velocity of the traveling wave is (a) 3.00×10^8 m/sec (b) 2.00×10^8 m/sec (c) 6.28×10^7 m/sec (d) 2.00×10^7 m/sec

88. A short-circuited stub is shunt connected to a transmission line as shown in Figure. If $Z_0 = 50$ ohm, the admittance Y seen at the junction of the stub and the transmission line is


- (a) (0.01 j0.02) ohm(b) (0.02 j0.01) ohm(c) (0.04 j0.02) ohm(d) (0.02 + j0) ohm
- 89. A rectangular metal wave-guide filled with a dielectric material of relative permitivity ϵ_r = 4 has the inside dimensions 3.0cm×1.2cm. The cut-off frequency for the dominant mode is

(a) 2.5 GHz (b) 5.0 GHz (c) 10.0 GHz (d) 12.5 GHz

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,

90. Two identical antennas are placed in the $\theta = \frac{\pi}{2}$ plane as shown in figure. The elements have equal amplitude excitation with 180° polarity difference, operating at wavelength λ . The correct value of the magnitude of the far-zone resultant electric field strength normalized with that of a single element, both computed for $\phi = 0$, is

Join **All India Mock GATE Classroom Test Series - 2007** conducted by GATE Forum in over 25 cities all over India. Question Papers including section tests and full tests are designed by IISc alumni according to the latest syllabus. Percentile, All India Rank, interaction with IISc alumni in our online discussion forums, and more. For more details,