				GENERA			
				<u>Q. No. 1 – 5 Ca</u>	arry One	Mark Each	
1.	If IM	IHO = JNIP; I	DK=JEL; a	nd $SO = TP$, then	n IDC=_	·	
	(A)	JDE	(B)	JDC	(C)	JCD	(D) JED
Answ	ver:	(D)				Click here to wa	atch video explanation
2.	Once	the team of a	nalysts iden	tify the problem	, we	in a better posi	tion to comment on the issue.
	Whic	ch one of the f	ollowing ch	oices CANNOT	fill the gi	ven blank?	
	(A)	might be	(B)	were to be	(C)	are going to be	(D) will be
Answ	ver:	(B)				Click here to wa	atch video explanation
3.	-	product of thread the minime	-		2. Z is eq	ual to 4 and P is e	equal to the average of X and Y
3.	-		-		2. Z is eq (C)	ual to 4 and P is e 9.5	equal to the average of X and Y
	What (A)	t is the minim	um possible	value of P?		9.5	
	What (A)	t is the minim	um possible	value of P?		9.5	(D) 8
	What (A)	t is the minim	um possible	value of P?		9.5	(D) 8
Answ	What (A) ver:	t is the minim 7 (A)	um possible (B)	value of P? 6	(C)	9.5	(D) 8 atch video explanation
Answ	What (A) ver: A fin	t is the minim 7 (A)	um possible (B)	value of P? 6	(C)	9.5 Click here to wa	(D) 8 atch video explanation
Answ 4.	What (A) ver: A fin (A) i	t is the minim 7 (A) al examinatio	um possible (B) n is the	value of P? 6 of a series of	(C) evaluation	9.5 Click here to wa ns that a student ha desperation	(D) 8 atch video explanation as to go through.
Answ 4.	What (A) ver: A fin (A) i	t is the minim 7 (A) al examination	um possible (B) n is the	value of P? 6 of a series of	(C) evaluation	9.5 Click here to wa ns that a student ha desperation	 (D) 8 atch video explanation as to go through. (D) consultation
Answ 4.	What (A) ver: A fin (A) i	t is the minim 7 (A) al examination	um possible (B) n is the	value of P? 6 of a series of	(C) evaluation	9.5 Click here to wa ns that a student ha desperation	 (D) 8 atch video explanation as to go through. (D) consultation
3. Answ 4. Answ	What (A) ver: A fin (A) i	t is the minim 7 (A) al examination	um possible (B) n is the	value of P? 6 of a series of	(C) evaluation	9.5 Click here to wa ns that a student ha desperation	 (D) 8 atch video explanation as to go through. (D) consultation

				ME, GATE-2			<u>www.gateforu</u>	
5.	Are t	here enough se	eats here? There a	re people	e here than I e	spected.		
	(B)	least	(C) many	' (A) most	(D)	more	
Answ	ver:	(D)			Click he	re to watch vid	leo explanation	
			<u>Q. No.</u>	6 - 10 Carry 7	Two Marks E	ach		
							_	
5.	X is :	an online medi	a provider By off	ering unlimited	1 and exclusiv	e online content	t at attractive prices	for
			-				embership. If its lo	
	•			U U			nore households w	•
		ning X than cal	-			5		
		-	ollowing statement	te can be inferre	ad from the ab	ove percoranh?		
	(A)		celling accounts of			ove paragraph:		
	(B)		rs prefer to watch					
	(C)		-			nbership disco	ontinue watching	cabl
		television						
	(D)	Cable televis	ion operators don'	t subscribe to 2	X's loyalty me	mbership		
Answ	ver:	(C)			Click he	<u>re to watch vio</u>	leo explanation	
	Two	nines P and O	can fill a tank in	6 hours and 9 1	hours respectiv	velv while a th	ird pipe R can empt	tv th
•						•	is opened. After 6	•
			The total time take	-			is spencer riter o	
	(A)	16.50	(B) 14.50		C) 13.50	(D)	15.50	
				· · · · · · · · · · · · · · · · · · ·	,	. ,		
Answ	/er:	(B)			CIICK ne	<u>re to watch vic</u>	<u>leo explanation</u>	

www.gateforum.com

8. Mola is a digital platform for taxis in a city. It offers three types of rides – Pool, Mini and Prime. The table below presents the number of rides for the past four months. The platform earns one US dollar per ride. What is the percentage share of revenue contributed by Prime to the total revenues of Mola, for the entire duration?

					Mon	th		
			Туре	January	February	March	April	
			Pool	170	320	215	190	
			Mini	110	220	180	70	
			Prime	75	180	120	90	
	(A)	16.24	(B)	23.97	(C)	25.86	(D) 38.74
A	nswer:	(B)						video explanation
		(-)						

9. Fiscal deficit was 4% of the GDP in 2015 and that increased to 5% in 2016. If the GDP increased by 10% from 2015 to 2016, the percentage increase in the actual fiscal deficit is

(A)	37.50	(B) 25.00	(C) 35.70	(D) 10.00
Answer:	(A)		Click he	ere to watch video explanation

10. While teaching a creative writing class in India, I was surprised at receiving stories from the students that were all set in distant places: in the American West with cowboys and in Manhattan penthouses with clinking ice cubes. This was, till an eminent Caribbean writer gave the writers in the once-colonised countries the confidence to see the shabby lives around them as worthy of being "told".

The writer of this passage is surprised by the creative writing assignments of his students because _____.

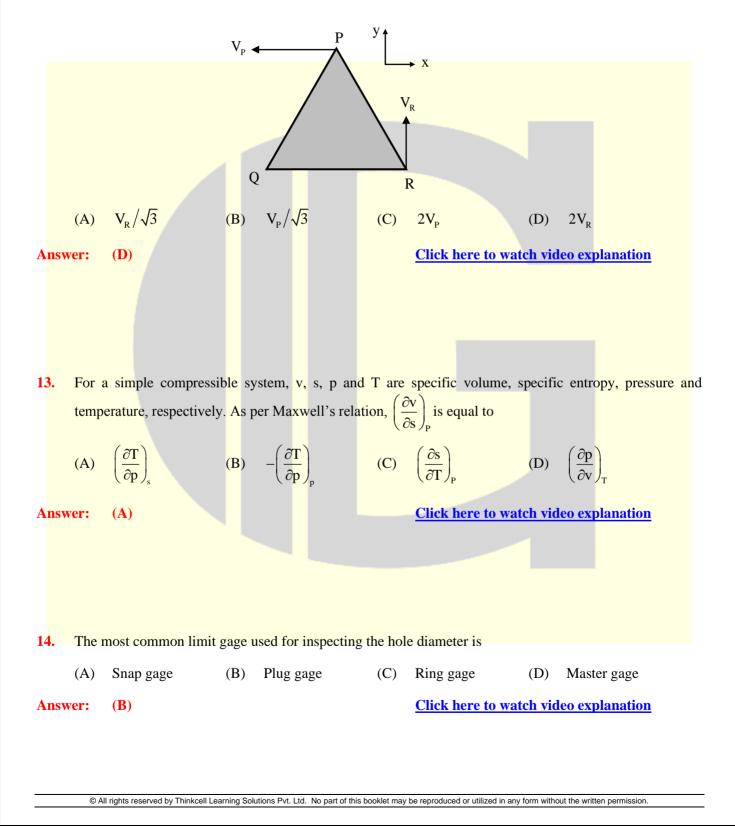
- (A) None of the students had written stories set in India
- (B) Some of the students had written about ice cubes and cowboys
- (C) Some of the students had written stories set in foreign places
- (D) None of the students had written about ice cubes and cowboys

Answer: (A)

GATEFORUM

Click here to watch video explanation

		ME, GATE-2019	SET-II	<u>www.gateforum.co</u>
		MECHANICAL ENG	INEERING	
		<u>Q. No. 1 – 25 Carry On</u>	e Mark Each	
1. If x is the	e mean of data 3, x, 2	and 4, then the mode is		
Answer: (3))		Click here t	o watch video explanation
				a workpiece (when there is relativ arface with a regular pattern is
	namfering (B)	Roll forming (C)	Knurling	(D) Strip rolling
Answer: (C		6 (-)	-	o watch video explanation
	de of the force produce	I plane truss. If a horizon ed in member CD is A \rightarrow 300N B C D 75° 75° G		00N is applied at point A, then th

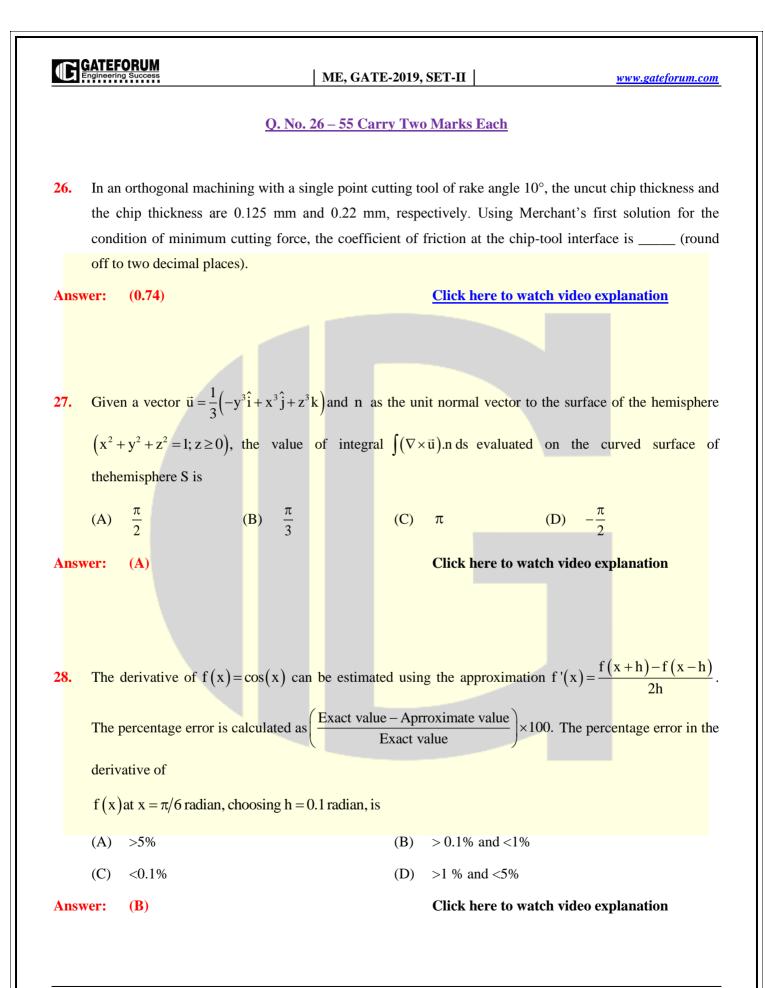

(A (C Answer: 5. Co M Y	x) ;; Pa a pounț e sh	viscosity surface tension (B) der a linear elast along the length	tic rectan directio	gular thi	in sheet o	(B) (D)	degree of superl freezing range <u>Click here to w</u>) increases with increase in heat ratch video explanation
(C Answer: 5. Co M Yo th	c) : Pa a oung	surface tension (B) der a linear elast along the length g's modulus E =	direction	0		(D)	freezing range Click here to w	vatch video explanation
Answer: 5. Co M Yo th	onsi Pa a oung e sh	(B) der a linear elast along the length g's modulus E =	direction	0			<u>Click here to w</u>	
5. Co M Yo th	onsi Pa a oung e sh	der a linear elast along the length g's modulus E =	direction	0		f metal,		
M Ye th	Pa a oung e sh	along the length g's modulus E =	direction	0		of metal,	subjected to unifo	orm uniaxial tensile stress of 1
M Ye th	Pa a oung e sh	along the length g's modulus E =	direction	0		of metal,	subjected to unife	orm uniaxial tensile stress of 1
M Ye th	Pa a oung e sh	along the length g's modulus E =	direction	0		of metal,	subjected to unife	orm uniaxial tensile stress of 1
M Ye th	Pa a oung e sh	along the length g's modulus E =	direction	0		of metal,	subjected to unifo	orm uniaxial tensile stress of 1
Yo	oung e sh	g's modulus E =		n. Ass <mark>un</mark>	no e1e			
th	e sh	-	• 200 MP		ne plane	stress co	ondition in the pla	ane normal to the thickness. T
		eet are		a and Po	oisson's r	ratio v=	0.3 are given. The	e principal strains in the plane
(A	`							
)	(0.35, -0.15)	(B)	(0.5, –	0.5)	(C)	(0.5, 0.0)	(D) (0.5, -0.15)
Answer		(D)					Click here to w	atch video explanation
. Tł	ne st	tate of stress at a	ı point in	a comp	onent is r	represent	ed by a Mohr's c	ircle of radius 100 MPa center
at	200	MPa on the nor	rmal stre	ss axis. (On a plan	e passin	g through the san	ne point, the normal stress is 2
М	Pa.	The magnitude of	of the she	ear stress	s on the s	ame plar	ne at the same point	nt is MPa.
Answer		(80)					Click here to w	atch video explanation
7. A		ra of aircular a	ross soot	ion of d	liamatar	1.0 mm	ic hant into a c	pircular are of radius 10 m
								circular are of radius 1.0 m for the material of the wire is 1
_	-	The maximum te	-				_	or the material of the wife is I
Answer		(50)			· I ·			atch video explanation

	AIEF gineerin	g Success		ME, GAT	TE-2019,	SET-II	<u>www.gateforum.com</u>
							$= x\hat{i} - y\hat{j}$. If ρ is the density of th v field is given as
	(A)	$\rho\!\left(x\hat{i}\!-\!y\hat{j}\right)$	(B) –	$o\left(x^2\hat{i}+y^2\hat{j}\right)$	(C)	$\rho \Big(x \hat{i} + y \hat{j} \Big)$	(D) $-\rho(x\hat{i}+y\hat{j})$
Answe	er:	(D)				<u>Click here to</u>	watch video explanation
	varie thern	s linearly in the nal conductivity of	direction of of the materia	heat transfer. al is constant a	Assume	e there is no he	solid whose cross-sectional are eat generation in the solid and th perature.
		emperature distri					
Answe	(A)	Logarithmic (A)	(B) Qı	uadratic	(C)	Linear	(D) Exponential watch video explanation
10.	Endu	rance limit of a t	beam subject	ed to pure ben	ding dec	reases with	
	(A)	decrease in the	surface roug	hness and incr	ease in t	he size of the b	eam
		accrease in the					
	(B)	increase in the	surface rough	nness and decr	rease in t	he size of the b	eam
	(B) (C)						
		increase in the	surface rough	nness and incre	ease in t	he size of the be	eam
	(C) (D)	increase in the sincrease in the sincrea	surface rough	nness and incre	ease in t	he size of the be the size of the b	eam
Answe	(C) (D) er: Whic	increase in the s increase in the s decrease in the (C)	surface rough surface roug ollowing mo	nness and incre hness and decr difications of	ease in t rease in f the sir	he size of the be the size of the t Click here to nple ideal Rar	eam beam <u>watch video explanation</u> nkine cycle increases the therma
Answe	(C) (D) er: Whic effici	increase in the sincrease sincrea	surface rough surface roug ollowing mo	nness and incre hness and decr difications of e content of th	ease in t rease in f the sir he steam	he size of the bo the size of the b <u>Click here to</u> nple ideal Ran at the turbine o	eam beam watch video explanation watch video explanation watch video explanation
Answe 11.	(C) (D) er: Whic	increase in the s increase in the s decrease in the (C)	surface rough surface roug ollowing mo s the moistur condenser pr	nness and incre hness and decr difications of e content of th ressure	ease in t rease in f the sir	he size of the be the size of the b <u>Click here to</u> nple ideal Rar at the turbine o Increasing the	eam beam <u>watch video explanation</u> nkine cycle increases the therma

GATEFORUM

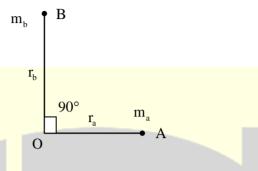
www.gateforum.com

12. A rigid triangular body, PQR, with sides of equal length of 1 unit moves on a flat plane. At the instant shown, edge QR is parallel to the x-axis, and the body moves such that velocities of points P and R are $V_{\rm P}$ and $V_{\rm R}$, in the x and y directions, respectively. The magnitude of the angular velocity of the body is


GATEFORUM ME, GATE-2019, SET-II www.gateforum.com The directional derivative of the function $f(x, y) = x^2 + y^2$ along a line directed from (0, 0) to (1, 1), 15. evaluated at the point x = 1, y = 1 is (C) $2\sqrt{2}$ (D) $\sqrt{2}$ (A) $4\sqrt{2}$ (B) $\sqrt{2}$ Click here to watch video explanation **Answer: (C)** Water enters a circular pipe of length L = 5.0 m and diameter D = 0.20 m with Reynolds number **16.** $Re_{D} = 500$. The velocity profile at the inlet of the pipe is uniform while it is parabolic at the exit. The Reynolds number at the exit of the pipe is_ Click here to watch video explanation (500)**Answer:** In matrix equation $[A]{X} = {R},$ 17. $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 4 & 8 & 4 \\ 8 & 16 & -4 \\ 4 & -4 & 15 \end{bmatrix}, \{X\} = \begin{cases} 2 \\ 1 \\ 4 \end{cases} \text{ and } \{R\} = \begin{cases} 32 \\ 16 \\ 64 \end{cases}.$ One of the eigenvalues of matrix [A] is (A) 8 (B) 16 15 (C) (D) 4 **Click here to watch video explanation Answer: (B)** Sphere 1 with a diameter of 0.1 m is completely enclosed by another sphere 2 of diameter 0.4 m. The view 18. factor F_{12} is (A) 0.0625 (B) 0.5 (C) 1.0 (D) 0.25 **Answer:** Click here to watch video explanation **(C)** © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

	FORUM ng Success	MI	E, GATE-2019, S	SET-II	<u>www.gateforum.com</u>
is 20	00V and the capacit			-	cross inter electrode gap (IEG) eleased per spark across the IEG
^{1S} Answer:	. (1)			Click here to w	atch video explanation
heat prop Rayl Rayl	to the surroundings erties of the surro leigh numbers is g	by natural convect unding fluid, are iven as Nu = KRa	ction. The temp constant. The $^{1/4}$, where K is ate. The height Vertica $g = 9.8 \text{ m/s}^2$	erature of the pla relationship bet a constant. The of the plate is in	the plane of the figure, is losing the and the surroundings, and the tween the average Nusselt and e length scales for Nusselt and creased to 16L keeping all other
			the first plate	is h_1 and that for	the second plate is h ₂ , the value
of th Answer:	the ratio h_1/h_2 is(2)			<u>Click here to w</u>	atch video explanation
21. A sp	our gear has pitch ci	rcle diameter D an	d number of tee	eth T. The circula	r pitch of the gear is
(A)	D	(B) $\frac{2\pi D}{T}$	(C)	$\frac{\pi D}{T}$	(D) $\frac{T}{D}$
Answer:	(C)			Click here to w	atch video explanation

. Lu. No part of this booklet may

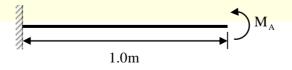

			ME, GATE-2019,	SET-II	<u>www.gateforum.co</u>					
22.	An ai	nalytic function f(z) of comple	ex variable $z = x + iy$	may be written as $f(z) = u(x)$	(x, y) + iv(x, y). The					
	u(x, y	y) and v(x, y) must satisfy								
	(A)	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}} \text{ and } \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	(B)	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = -\frac{\partial \mathbf{v}}{\partial \mathbf{y}} \text{ and } \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$						
		∂u ∂v ,∂u ∂v		∂u ∂v ,∂u ∂v						
	(C)	$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$	(D)	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}}$ and $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$						
Answe	er:	(D)		Click here to watch video e	explanation					
23.	Harde	enability of steel is a measure o	of							
	(A)	the ability to retain its hardness when it is heated to elevated temperatures								
	(B)	the ability to harden when it is cold worked								
	(C)	the depth to which required has	ardening is obtained	when it is austenitized and the	n quenched					
	(D)	the maximum hardness that ca	an be obtained when	it is austenitized and then que	nched					
Answe	er:	(C)		Click here to watch video e						
24.	The t	ransformation matrix for mirro	ring a point in x-y pl	ane about the line $y = x$ is give	en by					
	(A)	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (B) \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ (C)	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0					
					-					
Answ	er:	(A)		Click here to watch video e	xplanation					
25.	The	differential equation $\frac{dy}{dx}$	+4y=5 is valid	in the domain $0 \leq \times \leq$	≤ 1 with $y(0) = 2.2$					
	The s	olution of the differential equa	tion is							
	(A)	$y = e^{-4x} + 1.25$	(B)	$y = e^{4x} + 1.25$						
	(C)	$y = e^{-4x} + 5$		$y = e^{4x} + 5$						
	er:	(A)		Click here to watch video e	volumetion					

www.gateforum.com

29. Two masses A and B having mass m_a and m_b , respectively, lying in the plane of the figure shown, are rigidly attached to a shaft which revolves about an axis through O perpendicular to the plane of the figure.

The radii of rotation of the masses m_a and m_b are r_a and r_b , respectively. The angle between lines OA and OB is 90°. If $m_a = 10 \text{ kg}$, $m_b = 20 \text{ kg}$, $r_a = 200 \text{ mm}$ and $r_b = 400 \text{ mm}$, then the balance mass to be placed at a radius of 200 mm is _____ kg (round off to two decimal places)

Answer: (41.231)

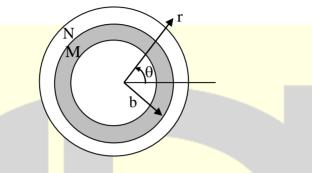

Click here to watch video explanation

30. A through hole is drilled in an aluminum alloy plate of 15 mm thickness with a drill bit of diameter 10 mm, at a feed of 0.25 mm/rev and a spindle speed of 1200 rpm. If the specific energy required for cutting this material is 0.7 N – m/mm³, the power required for drilling is _____ W. (round off to two decimal places).

Answer: (274.889)

Click here to watch video explanation

31. A horizontal cantilever beam of circular cross-section, length 1.0 m and flexural rigidity $EI = 200 \text{ N} - \text{m}^2$ is subjected to an applied moment $M_A = 1.0 \text{ N}$ -m at the free end as shown in the figure.


 The magnitude of the vertical deflection of the free end is _____ mm (round off to one decimal place)

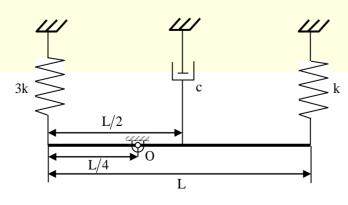
 Answer:
 (2.5)

 Click here to watch video explanation

www.gateforum.com

32. Consider two concentric circular cylinders of different materials M and N in contact with each other at r = b, as shown below. The interface at r = b is frictionless. The composite cylinder system is subjected to internal pressure P. Let (u_r^M, u_{θ}^M) and $(\sigma_{rr,}^M, \sigma_{\theta\theta}^M)$ denote the radial and tangential displacement and stress components, respectively, in material M.

Similarly (u_r^N, u_{θ}^N) and $(\sigma_{rr}^N, \sigma_{\theta\theta}^N)$ denote the radial and tangential displacement and stress components, respectively, in material N. The boundary condition that need to be satisfied at the frictionless interface between the two cylinders are:


- $(A) \qquad u^M_r = u^N_r \text{ and } \sigma^M_{rr} = \sigma^N_{rr} \text{ and } u^M_\theta = u^N_\theta \text{ and } \sigma^M_{\theta\theta} = \sigma^N_{\theta\theta}$
- (B) $u_{\theta}^{M} = u_{\theta}^{N}$ and $\sigma_{\theta\theta}^{m} = \sigma_{\theta\theta}^{N}$ only
- (C) $\sigma_{rr}^{M} = \sigma_{rr}^{N}$ and $\sigma_{\theta\theta}^{M} = \sigma_{\theta\theta}^{N}$ only
- (D) $u_r^M = u_r^N$ and $\sigma_{rr}^M = \sigma_{rr}^N$ only

Answer: (D)

Æ

Click here to watch video explanation

33. A slender uniform rigid bar of mass m is hinged at O and supported by two springs, with stiffnesses 3k and k, and a damper with damping coefficient c, as shown in the figure.

	Engineerir	ng Success		ME, GA	ATE-2019,	SET-II	<u>www.gateforum.co</u>
	For t	he system to b	e critically da	mped, the ratio	oc/\sqrt{km}	should be	
	(A)	$4\sqrt{7}$	(B) 4	1	(C)	$2\sqrt{7}$	(D) 2
Ansv	wer:	(A)				Click here to	watch video explanation
<mark>34.</mark>	An a	ir standard Ot	to cycle has t	hermal efficie	ency of 0.	5 and the mean	n effective pressure of the cycle
	1000	kPa. For air,	assume speci	fic heat ratio	$\gamma = 1.4$ and	l specific gas	constant $R = 0.287$ kJ/kg.K. If the
	press	sure and tempe	rature at the b	eginning of th	ne compre	ssion stroke ar	e 100 kPa and 300 K, respectivel
	then	the specific ne	t work output	of the cycle is	s kJ/kg	g (round off to	two decimal places).
Ansy	wer:	(708.6)				Click here to	watch video explanation
35.							2kW power while running at 300
	-		-				he pump is radial with respect
	ımpe		nd off to two off			flow rate of	the liquid through the pump
				leciniai piaces	5).		
Ansv	wer:	(8.1057)				Click here to	watch video explanation
36.	A ba	II of mass 3 k	g moving wit	h a velocity o	of 4 m/s u	ndergoes a pe	rfectly-clastic direct-central impa
36.			-				rfectly-clastic direct-central impa energy of the 3 kg ball is 6J. Th
36.	with		all of mass m				rfectly-clastic direct-central impa energy of the 3 kg ball is 6J. Th
36.	with	a stationary b	all of mass m of m is/are	. After the im		ver, the kinetic	energy of the 3 kg ball is 6J. The
	with possi (A)	a stationary b ible value (s) o 6 kg only	all of mass m of m is/are		npact is ov	ver, the kinetic	energy of the 3 kg ball is 6J. The contract of the 3 kg ball is 6J. The contract of the 3 kg ball is 6J.
36. Ansv	with possi (A)	a stationary b ible value (s) o	all of mass m of m is/are	. After the im	npact is ov	ver, the kinetic	energy of the 3 kg ball is 6J. The
	with possi (A)	a stationary b ible value (s) o 6 kg only	all of mass m of m is/are	. After the im	npact is ov	ver, the kinetic	energy of the 3 kg ball is 6J. The contract of the 3 kg ball is 6J. The contract of the 3 kg ball is 6J.

C	GATEFO Engineering S	RUM		ME, GATE-20	19, SET-II	<u>www.gateforum.com</u>
37.	valves If the	per order. The ho	lding cost is F	Rs. 24 per valve ed to Economic	e per year and th c order quantity,	s. The current order quantity is 400 e ordering cost is Rs. 400 per order. then the saving in the total cost of
Ansv	wer:	(943.60)			<u>Click here t</u>	o watch video explanation
38. Ansv 39.	specifi The po system system wer: The ac examp	c enthalpy of the y ower input to the of and the surround iskW (r (2.1)	water increase electric heater lings, Assumi ound off to tw ect, their dura e relationship	s by 2.50 kJ/kg is 2.50 kW. Th ng an ambient to decimal place ation and the p "X <y, me<="" td="" z"=""><td>and the specific here is no other w temperature of 3 es). Click here t precedence relation ans that X is precedence</td><td>ing an electric heater such that the entropy increases by 0.007 kJ/kg K. vork or heat interaction between the 300 K, the irreversibility rate of the o watch video explanation ionship are given in the table. For edecessor of activities Y and Z. The</td></y,>	and the specific here is no other w temperature of 3 es). Click here t precedence relation ans that X is precedence	ing an electric heater such that the entropy increases by 0.007 kJ/kg K. vork or heat interaction between the 300 K, the irreversibility rate of the o watch video explanation ionship are given in the table. For edecessor of activities Y and Z. The
			Activity	Duration	Precedence	
				(weeks)	Relationship	
			A B	5	A <b, c,d<="" td=""><td>-</td></b,>	-
			C	10	B <e,f,g C<i< td=""><td></td></i<></e,f,g 	
			D	6	D <g< td=""><td>-</td></g<>	-
			E	3	E <h< td=""><td>-</td></h<>	-
			F	9	F <i< td=""><td></td></i<>	
			G	7	G <i< td=""><td>-</td></i<>	-
			H	4	H <i< td=""><td></td></i<>	
			Ι	2		
						-
	(A)	21	(B) 23	(C	2) 17	(D) 25

Click here to watch video explanation

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Answer: (B)

GATEFORUM

| ME, GATE-2019, SET-II |

www.gateforum.com

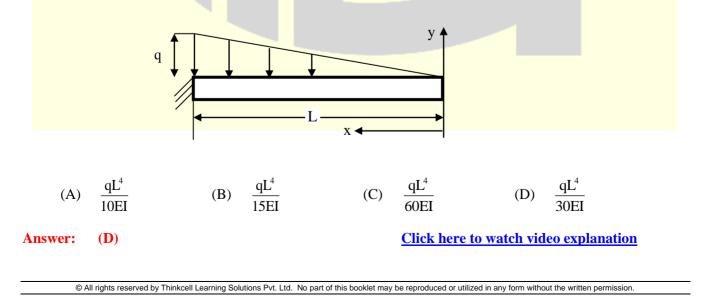
40. A differential equation is given as

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 4$$

The solution of the differential equation in terms of arbitrary constants C_1 and C_2 is

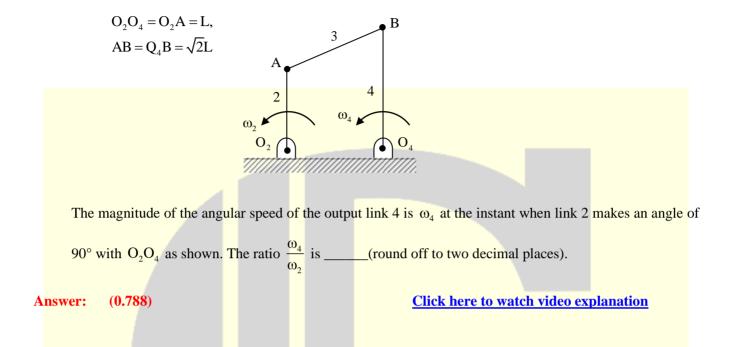
(A) $y = C_1 x^2 + C_2 x + 4$ (B) $y = \frac{C_1}{x^2} + C_2 x + 4$ (C) $y = \frac{C_1}{x^2} + C_2 x + 2$ (D) $y = C_1 x^2 + C_2 x + 2$

Answer: (D)


Click here to watch video explanation

41. Water flows through two different pipes A and B of the same circular cross-section but at different flow rates. The length of pipe A is 1.0 m and that of pipe B is 2.0 m. The flow in both the pipes is laminar and fully developed. If the frictional head loss across the length of the pipes is same, the ratio of volume flow rate Q_B/Q_A is (round off to two decimal places).

Answer: (0.5)


Click here to watch video explanation

42. A prismatic, straight, elastic, cantilever beam is subjected to a linearly distributed transverse load as shown below. If the beam length is L, Young's modulus E, and are moment of inertia I, the magnitude of the maximum deflection is

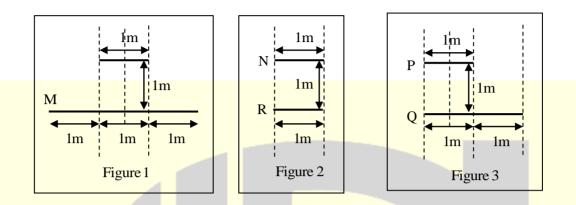
www.gateforum.com

43. A four bar mechanism is shown in the figure. The link numbers are mentioned near the links, input link 2 is rotating anticlockwise with a constant angular speed ω_2 . Length of different links are:

44. A gas tungsten are welding operation is performed using a current of 250 A and an arc voltage of 20 V at a welding speed of 5 mm/s. Assuming that the arc efficiency is 70% the net heat input per unit length of the weld will be kJ/mm (round off to one decimal place).

Answer: (0.7)

GATEFORUM

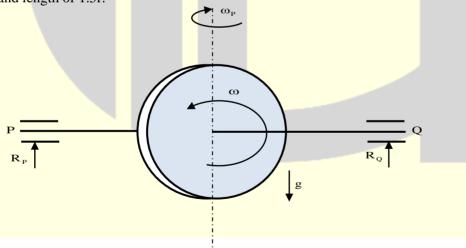

Click here to watch video explanation

C Engineering Success

| ME, GATE-2019, SET-II |

www.gateforum.com

45. Three sets of parallel plate LM, NR and PQ are given in Figures 1, 2 and 3. The view factor F_{IJ} is defined as the fraction of radiation leaving plate I that is intercepted by plate J.



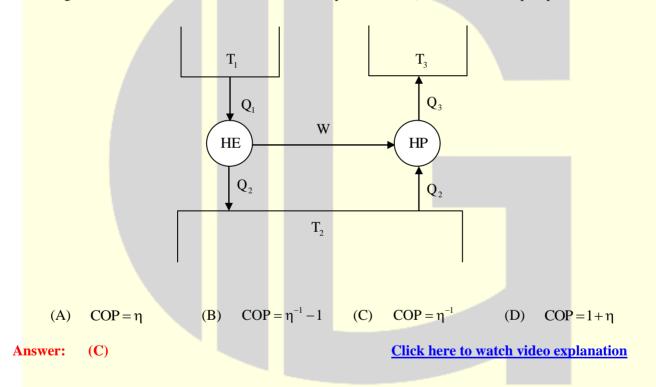
Assume that the values of F_{LM} and F_{NR} are 0.8 and 0.4 respectively. The value of F_{PQ} (round off to one decimal place) is_____.

Answer: (0.6)

<u>Click here to watch video explanation</u>

46. A uniform disc with radius r and a mass of m kg is mounted centrally on a horizontal axle of negligible mass and length of 1.5r.

The disc spins counter-clockwise about the axle with angular speed ω , when viewed from the right-hand side bearing Q, a The axle processes about a vertical axis at $\omega_p = \omega/10$ in the clockwise direction when viewed from above. Let R_p and R_Q (positive upwards) be the resultant reaction forces due to the mass


www.gateforum.com

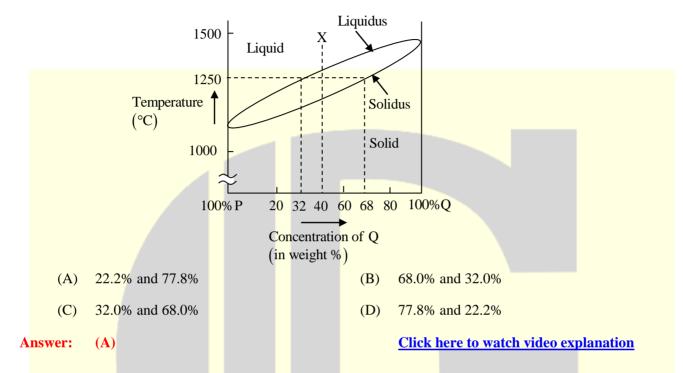
and the gyroscopic effect, at bearings P and Q, respectively. Assuming $\omega^2 r = 300 \text{m}/\text{s}^2$ and $g = 10 \text{m}/\text{s}^2$, the ratio of the larger to the smaller bearing reaction force (considering appropriate signs) is_____.

Answer: (-3)

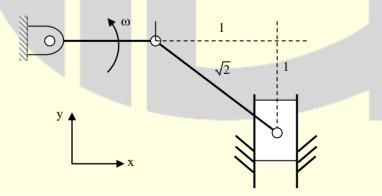
Click here to watch video explanation

47. The figure shows a heat engine (HE) working between two reservoirs. The amount of heat (Q_2) rejected by the heat engine is drawn by a heat pump (HP). The heat pump receives the entire work output (W) of the heat engine. If temperatures, $T_1 > T_3 > T_2$, then the relation between the efficiency (η) of the heat engine and the coefficient and the coefficient of performance (COP) of the heat pump is

48. The aerodynamic drag on a sports car depends on its shape. The car has a drag coefficient of 0.1 with the windows and the roof open, the drag coefficient becomes 0.8. The car travels at 44 km/h with the windows and roof closed. For the same amount of power needed to overcome the aerodynamic drag, the speed of the car with the windows and roof open (round off to two decimal places), is _____ km/h. (The density of air and the frontal area may be assumed to be constant.)


Answer: (22)

Click here to watch video explanation


| ME, GATE-2019, SET-II |

www.gateforum.com

49. The binary phase diagram of metals P and Q is shown in the figure. An alloy X containing 60% P and 40% Q (by weight) is cooled from liquid to solid state. The fractions of solid and liquid (in weight percent) at 1250°C, respectively, will be

50. The crank of a slider-crank mechanism rotates counter clockwise (CCW) with a constant angular velocity ω, as sown. Assume the length of the crank to be r.

Using exact analysis. The acceleration of the slider in the y-direction, at the instant shown, where the crank is parallel to x-axis, is given by

(A) $-2\omega^2 r$ (B) $2\omega^2 r$ (C) $\omega^2 r$ (D) $-\omega^2 r$ Answer:(C) \mathcal{C} Click here to watch video explanation

 51. The probability that a part manufactured by a company will be defective is 0.05. If such parts are selection randomly and inspected, then the probability that at least two parts will be defective is (round of two decimal places). Answer: (0.17) Click here to watch video explanation 52. The figure shows a pouring arrangement for casting of a metal block. Frictional losses are negligible. acceleration due to gravity is 9.81 m/s². The time (in s, round off to two decimal places) to fill up mold cavity (of size 40 cm×30 cm×15 cm) is	C GATEFORUM Engineering Success	ME, GATE-2019, SET-II	www.gateforum.com
 52. The figure shows a pouring arrangement for casting of a metal block. Frictional losses are negligible. acceleration due to gravity is 9.81 m/s². The time (in s, round off to two decimal places) to fill up mold cavity (of size 40 cm×30 cm×15 cm) is	randomly and inspec	cted, then the probability that at least two parts will be def	*
 acceleration due to gravity is 9.81 m/s². The time (in s, round off to two decimal places) to fill up mold cavity (of size 40 cm×30 cm×15 cm) is	Answer: (0.17)	Click here to watch	video explanation
53. Hot and cold fluids enter a parallel flow double tube heat exchanger at 100 °C and 15 °C, respective The heat capacity rates of hot and cold fluids are $C_h = 200 \text{ W/k}$ and $C_c = 1200 \text{ W/K}$, respectively. If outlet temperature of the cold fluid is 45°C, the log mean temperature difference (LMTD) of the l	acceleration due to mold cavity (of size Fili	gravity is 9.81 m/s ² . The time (in s, round off to two de 40 cm×30 cm×15 cm) is Atmospheric pressure ng height mg height Open to atmosphere Volume to be casted (mold cavity)	ecimal places) to fill up the
The heat capacity rates of hot and cold fluids are $C_h = 200 \text{ W/k}$ and $C_c = 1200 \text{ W/K}$, respectively. If outlet temperature of the cold fluid is 45°C, the log mean temperature difference (LMTD) of the l	Answer: (28.94)	Click here to watch	video explanation
Answer: (57.71) Click here to watch video explanation	The heat capacity ra outlet temperature of exchanger is	ates of hot and cold fluids are $C_h = 200 \text{ W/k}$ and $C_c = 120$ of the cold fluid is 45°C, the log mean temperature difference K (round of to two decimal places).	0 W/K, respectively. If the erence (LMTD) of the heat

Æ ME, GATE-2019, SET-II www.gateforum.com 54. The thickness of a sheet is reduced by rolling (without any change in width) using 600 mm diameter rolls. Neglect elastic deflection of the rolls and assume that the coefficient of friction at the roll-workpiece interface is 0.05. The sheet enters the rotating rolls unaided. If the initial sheet thickness is 2 mm, the minimum possible final thickness that can be produced by this process in a single pass is _____ mm (round of to two decimal places). **Click here to watch video explanation Answer:** (1.25) 55. A short shoe external drum brake is shown in the figure. The diameter of the brake drum is 500 mm. The dimensions a = 1000 mm, b = 500 mm and c = 200 mm. The coefficient of friction between the drum and the shoe is 0.35. a с Brake 7/17/17/ shoe b

The force applied on the lever F = 100 N as shown in the figure. The drum is rotating anti-clockwise. The braking torque on the drum is _____ N-m (roundoff to two decimal places).

Answer: (20.34)

<u>Click here to watch video explanation</u>