GATEFORUM Engineering Success

|CH, GATE-2012|

www.gateforum.in

CHEMICAL ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

Consider the following set of linear algebraic equations 1. $x_1 + 2x_2 + 3x_3 = 2$ $x_2 + x_3 = -1$ $2x_2 + 2x_3 = 0$ The system has (B) No solution (A) A unique solution An infinite number of solutions Only the trivial solution (C) (D) **Answer: (B)** If a and b are arbitrary constants, then the solution to the ordinary differential equation $\frac{d^2y}{dx^2} - 4y = 0$ is 2. (A) y=ax+b(B) $y = ae^{-x}$ (C) $y = a \sin 2x + b \cos 2x$ (D) $y = a \cosh 2x + b \sinh 2x$ Answer: **(D)** For the function $f(t) = e^{-t/\tau}$; the Taylor series approximation for t << τ is 3. (C) $1 - \frac{t}{2\tau^2}$ (B) $1 - \frac{t}{-1}$ (A) $1 + \frac{t}{\tau}$ (D) 1+t **Answer: (B)** A box containing 10 identical compartments has 6 red balls and 2 blue balls. If each compartment can 4. hold only one ball, then the numbers of different possible arrangements are (A) 1026 **(B)** 1062 (C) 1260 1620 (D) Answer: **(C)** © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

	C Engineering Success	CH, GATE-2012	www.gateforum.in
5.	Consider the following (2×2) matrix $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	ζ.	
	Which one of the following vectors is	NOT a valid eigen vector of	of the above matrix?
	(A) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (B) $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$	(C) $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$	$(D) \qquad \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
A	Answer: (D)		
6.			1%. If C_p and C_v are the heat capacities at
	constant pressure and constant volu	me, respectively $\left(\gamma = \frac{C_p}{C}\right)$, the specific volume will change by a
	factor of		
	(A) 2 (B) $2^{\frac{1}{\gamma}}$	(C) $2^{\frac{\gamma-1}{\gamma}}$	(D) 0.5
A	Answer: (B)		
7.	If the temperature of saturated water	is increased infinitesimally	at constant entropy, the resulting state of
	water will be		
	(A) Liquid	(B) Liquid	-vapour coexistence
	(C) Saturated vapour	(D) Solid	
A	Answer: (A)		
8	In a parallel flow heat exchanger ope	rating under steady state, h	ot liquid enters at a temperature T _{h,in} and
			T _{c,in} and leaves at a temperature. Neglect
	any heat loss from the heat exchange	er to the surrounding. If T_h	$_{in} >> T_{c,in}$, then for a given time interval,

which ONE of the following statements is true?

- (A) Entropy gained by cold stream is GREATER than entropy lost by hot stream
- (B) Entropy gained by cold stream is EQUAL than entropy lost by hot stream
- (C) Entropy gained by cold stream is LESS than entropy lost by hot stream
- (D) Entropy gained by cold stream is ZERO

Answer: (A)

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

.....

G	ngineerin	IG Success		CH, GATE-	2012		www.gateforum.ii
9.	For a	an exothermic reven	rsible reaction, wh	ich one of th	e following corre	etly desc	ribes the dependence of
	the e	quilibrium constant	(K) with temperat	ure (T) and p	ressure (P)?		
	(A)	K is independent	of T and P				
	(B)	K increases with a	an increase in T an	d P			
	(C)	K increases with	Г and decreases wi	th P			
	(D)	K decreases with	an increase T and i	is independen	t of P		
Answ	er:	(D)					
10.	Wate	er is flowing under l	laminar conditions	in a pipe of l	ength L. If the dia	meter of	the pipe is doubled, for
		stant volumetric flo			-		
	(A)	Decreases 2 times	3	(B)	Decreases 16 tin	nes	
	(C)	Increases 2 times		(D)	Increases 16 tim	nes	
Answ	or	(B)					
		(D)					
11.		local velocity of a f					
	(A)	Pitot tube	(B) Venturi m	eter (C)	Rotameter	(D)	Orifice meter
Answ	er:	(B)					
12.	For u	niform laminar flov	w (in the x-direction	on) past a flat	plate at high Reyr	nolds nur	nber, t <mark>he local bounda</mark> ry
	layer	thickness (δ) varie	es with the distance	e along the pla	ate (x) as		
	(A)	$\delta \propto x^{1/4}$	(B) $\delta \propto x^{1/3}$	(C)	$\delta \propto x^{1/2}$	(D)	$\delta \propto x$
			(D) 000 x	(0)	0 to K	(2)	0 · · · A
Answ	er:	(C)					
13.	In a	mixing tank operat	ing at very Reyno	lds number ($>10^4$), if the dia	meter of	the impeller is doubled
	(othe	r conditions remain	ning constant), the	power require	d increases by a f	actor of	
	(A)	1/32	(B) 1/4	(C)	4	(D)	32
			~ /	~ /			
Answ	er:	(D)					

G	GATEFORUM Engineering Success	CH, GATE-2012	www.gateforum.in
14.	For heat transfer across a solid	fluid interface, which one of the f	following statements is NOT true when
	the Biot number is very small co	mpared to 1?	-
	(A) Condition resistance in the	e solid is very small compared to c	onvection resistance in the fluid
	(B) Temperature profile within	n the solid is nearly uniform	
	(C) Temperature drop in the fl	uid is significant	
	(D) Temperature drop in the se	olid is significant	
Ans	wer: (D)		
15.	A solid sphere with an initial te	mperature T is immersed in a lar	ge thermal reservoir of temperature T _o .
1.			the radius of the sphere is doubled, the
	time required to reach steady star	^	the factors of the sphere is doubled, the
	(A) $\frac{t_1}{4}$ (B)	(C) $2t_1$	(D) $4t_1$
Ans	wer: (D)		
• • • • • • •			
16	If the New 10 million (Ne) from		$\mathbf{D}_{\text{rescale}} = \mathbf{D}_{\text{rescale}} \mathbf{D}_{$
16.			Reynolds number (Re) as $Nu \propto Re^{0.8}$,
	D as	ty in the pipe, the heat transfer co	oefficient varies with the pipe diameter
		$D^{-0.2}$ (C) $D^{0.2}$	(D) $D^{1.8}$
	(A) $D^{-1.8}$ (B)	$D^{-0.2}$ (C) $D^{0.2}$	(D) $D^{1.8}$
Ans	wer: (B)		
1 7.	In the Mc-Cabe-Thiele diagram	, if th <mark>e</mark> x-coordinate of the poin	nt of intersection of t <mark>he q-line and th</mark> e
	vapour-liquid equilibrium curve	is greater than the x-coordinate o	of the feed point, then the quality of the
	feed is		
	(A) Superheated vapour	(B) Liquid be	elow bubble point
	(C) Saturated vapour	(D) Saturated	d liquid
Ans	wer: (B)		

C	GATEF Engineerir	ORUM ng Success		CH, GATE-	2012		www.gateforum.in			
18.	For v	which of the fol	owing combinations,	does the absor	ption operation	on become g	as-film controlled?			
	P.		of gas in the liquid is			C				
	Q.	•	of gas in the liquid is	• •						
	R.	•		-	nigher than the	e gas-side m	ass transfer coefficient			
	S.	The liquid-sid	e mass transfer coeffi	cient is much l	lower than the	gas-side ma	ss transfer coefficient			
	(A)	P&Q	(B) P & R	(C)	P&S	(D)	Q & R			
Ans	wer:	(B)								
19.	The	half-life of an n	^h order reaction in a b	atch reactor de	epends on					
	(A)	Only the rate	constant							
	(B)	Only the rate	constant and the order	of the reaction	n					
	(C)	Only the rate	constant and initial rea	actant concentr	ration					
	(D)	The rate const	ant, initial reactant co	ncentration an	d the order of	the reaction				
Ans	wer:	(D)								
20.	Both	the reactions a	re first-order. The acti ld of B, it is preferabl h temperature	$\xrightarrow{k_1} B \xrightarrow{k_2}$		h temperatu				
Ans	wer:	(B)								
21.	In pe	etroleum refinin	g catalytic reforming i	s used to conv	ert					
	(A)	Paraffins and	naphthenes to aromati	c						
	(B)	Paraffins to h	drogen and carbon m	onoxide						
	(C)	Gas oil to dies	el and gasoline							
	(D)	-								
Ans	wer:	(A)								

G	GATEF Engineerin	ORUM ^{19 Success} CH, 0	GATE-2012	www.gateforum.in
22.	The f (A) (B)	final boiling points of gasoline, diesel, atmos Gasoline > diesel > AGO > lubricating oils Lubricating oils > AGO >diesel > gasoline		bricating oils vary as
	(C) (D)	AGO > lubricating > oils > diesel > gasolin Lubricating oils > diesel >AGO > gasoline		
Ans	wer:	(B)		
23. Ans: 24.	press temp (A) (B) (C) (D) wer:	main unit processes used for the production sure swing adsorption (PSA), low tempe berature water gas shift reaction (HT WGS). SR;LT WGS; HTWGS; PSA PSA; SR; LTWGS; HTWGS SR; HTWGS; LTWGS; PSA PSA; HTWGS; LTWGS; SR (C) thermometer initially at 100°C is dipped at t	of hydrogen from natural g rature water gas shift rea The correct sequence of thes	action (LT WGS) and high se in the plant is
24.		perature is 130°C after 1 minute, then the time		
	(A)	1.98 (B) 1.35	(C) 1.26	(D) 1.09
Ans	wer:	(D)		
25.	The	Bode stability criterion is applicable when		
	(A)	Gain and phase curves decrease continuous		
	(B)	Gain curve increases and phase curve decre		
	(C) (D)	Gain curve and phase curve both increase v Gain curve decreases and phase curve incre	- ·	
Ans	wer:	(A)		

|CH, GATE-2012|

www.gateforum.in

Q. No. 26 - 55 Carry Two Marks Each

26. The one-dimensional unsteady state heat conduction equation in a hollow cylinder with a constant heat source q is

 $\frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + q$

GATEFORUM Engineering Success

If A and B are arbitrary constants, then the steady state solution to the above equation is

(A)
$$T(r) = -\frac{qr^2}{2} + \frac{A}{r} + B$$

(B) $T(r) = -\frac{qr^2}{4} + A\ln r + B$
(C) $T(r) = A\ln r + B$
(D) $T(r) = \frac{qr^2}{4} + A\ln r + B$

Answer: (B)

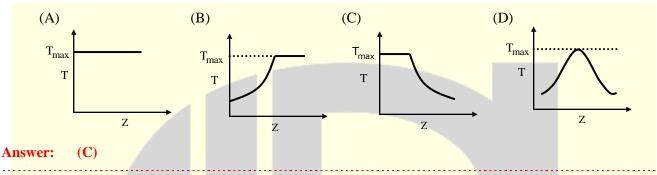
27. If a is a constant, then the value of the integral $a^2 \int_0^{\infty} x e^{-ax} dx$ is (A) 1/a (D)

(A)
$$1/a$$
 (B) a (C) 1 (D) 0
Answer: (C)
28. The Newton-Raphson method is used to find the roots of the equation
 $f(x) = x - \cos \pi x$ $0 \le x \le 1$
If the initial guess for the root is 0.5, then the value of x after the first iteration is
(A) 1.02 (B) 0.62 (C) 0.55 (D) 0.38
Answer: (D)
29. If $i = \sqrt{-1}$, the value of the integral $\oint_c \frac{7z + i}{z(z^2 + 1)} dz$ $|z| < 2$ using Cauchy residue theorem is
(A) $2\pi i$ (B) 0 (C) -6π (D) 6π
Answer: (B)

G	GATEF Engineerir	ORUM ng Success		CH	, GATE-2	2012		www.gateforum.ir
30.	T _s , a P _s . T negli	nd specific volu here is no heat t	ume v _s . The transfer bet d C _v are th	e container is fil ween the supply he heat capacition	led with t line to th es at cons	he gas until the container, ar stant pressure	ne pressure	pressure P_s , temperature in the container reaches nd potential energies are nt volume, respectively
	(A)	γT_s	(B)	T _s	(C)	$(\gamma - 1)T_s$	(D)	$(\gamma - 1)T_s / \gamma$
Ans	wer:	(A)						
31.			-	ure at constant	temperatu	ire T and pres	ssure P. If	the enthalpy change of ctively, and the entropy
	chan	ge of mixing <i>L</i>	$\Delta S = -R \left[x_1 \right]$	$\ln x_1 + x_2 \ln x_2$	(with R=	=8.314J/mol.K), then the	minimum value of the
		s free energy ch	-	-				
	(A)	$x_1 = 0$	(B)	$x_1 = 0.2$	(C)	$x_1 = 0.4$	(D)	$x_1 = 0.5$
Ans	wer:	(D)						_
32.	liqui diam	d of density 100	00 kg/m ³ a	nd viscosity 0.1	Pa.s. Ass	ume that the l	Reynolds nu	5) is to be fluidized by a umber based on particle n/s) required to fluidize 30
Ans	wer:	(A)						
33. Ans		the enclosure for the enclosure for 1/4 1/2 $1/\sqrt{2}$ 3/4 (D)			-	Heres as shown $Area A_1^{-1}$		$A_2=2R_1$), the fraction of A_1 (Area A_2)
						be reproduced or utilize		

U	Engineering	Success			CH, GAT	E-2012			www.gatefo	orum.
4.	Heat	generated	at a ste	ady rate	of 100W	due to	resistance	heating	in a long	wii
	(leng	th = 5m, dia	meter =2mm). This wir	e is wrappe	ed with a	n insulation	of thickne	ess 1mm that	has
	therm	al conductiv	vity of 0.1W	/m K. The	insulated w	ire is exp	posed to air	at 30°C. T	The convectiv	e he
	transf	er between t	he wire and	surrounding	air is chara	cterized b	y a heat trar	nsfer coeffi	cient of 10W	$/m^2$.
	The te	emperature i	n °C at the in	terface the w	vire and the	insulation	n is			
	(A)	211.2	(B)	242.1	(C) 311.2		(D) 484	.2	
nsv	wer:	(A)								
5.	In a c	ounter-flow	double pipe	heat exchan	ger, oil (ṁ	= 2 kg / s,	$C_{p} = 2.1 kJ /$	kg°C) is c	cooled from 9	0°C
									. The radius	
					, ,					
			ć		0 0	wall lesi	stance, the c	iverall heat	transfer coef	ncie
			radius in (k	,						
	(A)	0.743	(B)	7.43	(C) 74.3		(D) 247	75	
.nsv	wer:	(B)					_			
6.	The ra	ate controllin	ng step for th	e solid catal	yzed <mark>irreve</mark> i	sible reac	tion			
		A+B	γС							
	is kno	own to be the	e reaction of	adsorbed A	with adsort	ed B to g	ive adsorbed	d C. If P _i is	the partial pr	essu
		-		-	-	m consta	nt of compo	onent I, the	en the form	of th
	Langı		lwood rate e	-	ll be					
	(A)	rate $\propto \frac{1}{1+K}$	$\frac{P_A P_B}{K_A P_A + K_B P_B}$	$+ K_C P_C$						
	(B)	rate $\propto \frac{1}{(1+1)}$	$\frac{P_A P_B}{K_A P_A + K_B P_B}$	$\overline{F_3 + K_C P_C}^2$						
	(C)	rate $\propto \frac{1}{(1+1)}$	$\frac{P_A P_B}{K_A P_A + K_B P_B}$	$_{B} + K_{C}P_{C}$						
	(D)	rate $\propto \frac{P_A P_B}{P_C}$	<u>.</u>							

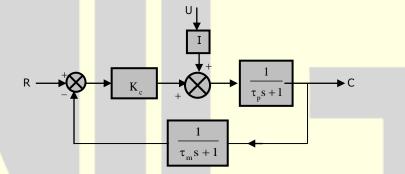
Answer: (B)


G	GATEFORUM Engineering Success	CH, GATE-2012	www.gateforum.in
37.		on shown in the figure below for a solid loading m^2 .h. The falling rate of drying is linear with mo	
		$X_{c} = 0.1$ $X_{e} = 0.005$ X_{e}	
		quired to reduce an initial moisture content of 2	25% to a final moisture content
	of 2% is (A) 1.55 (B) 1.75 (C) 3.25	(D) 4.55
Ans	wer: (C)		
38.	100kmol/h, such that the li vapour product in kmol/h is (A) 10 (B	and B (A being more volatile) is flash distilled quid product contains 40mol% of A. If the re b) 20 (C) 25	-
Ans	wer: (C)		
39.			
Ans	wer: (C)		
40.	(A) 20.9 (B	= 0 of K_c that will keep the system on the verge of i	instability is (D) 15.3
Ans	wer: (C)		
	© All rights reserved by Thinkcell Learning	Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any	y form without the written permission.

GATEFORUM Engineering Success

41. The elementary reversible exothermic gas-phase reaction

 $A + 3B \implies 2C$


is to be conducted in a non-isothermal, non-adiabatic plug flow reactor. The maximum allowable reactor temperature is T_{max} . To minimize the total reactor volume, the variation of reactor temperature (T) with axial distance from inlet (Z) be

42. The block diagram of a system with proportional controller is shown below

(B)

2.58

A unit step input is introduced in the set point. The value of K_c to provide a critically damped response for U=0, $\tau_p = 8$ and $\tau_m = 1$ is

(C)

1.53

(D)

1.12

(A) 3.34 Answer: (C)

43. A batch reactor produces 1×10^5 kg of a product per year. The total batch time in hours of the reactor is $k\sqrt{P_B}$, where P_B is the product per batch in kg and $k = 1.0h / \sqrt{kg}$. The operating cost of the reactor is 200 /h. The total annual fixed charges are Rs. $340 \times P_B$ and the annual raw material cost is Rs 2×10^6 . The optimum size in kg of each batch (adjusted to the nearest integer) is (A) 748 (B) 873 (C) 953 (D) 1148

Answer: (C)

(GATE Engineeri	FORUM ing Success				CH,	GATE	2012				www.g	ateforur	m.in
44	ener	gy saving	on is plann as of 20GJ cost of end	per y	ear. If the	e nomina	l rate of	interest i	s 15% an	d the p				
	(A)	33500		(B)	43800		(C)	54200		(D)	6540	00		
A1 45	nswer:	(B)	floating he	ead ty	pe shell	and tube	heat ex	changer, 1	he tubes	(od = 1	25mm;	; id = 2	21mm) ;	and
	arra	nged in a	square pitc	h. Th	e tube pit	ch is 32r	nm. The	thermal c	onductivi	ity of tł	ne shel	l side fl	luid is 0).19
			ne Nusselt i integer is	numb (B)	er is 200. 1400	. The she	ell side f	neat transf 1800	er coeffic	ient in (D)	W/m 2100		ounded	off
Ar	nswer:	(C)												
46	. Mat	ch the pro	cess in Lis	t I wit	h catalys	t in List	II.							


List I List II Р Fischer-Tropsch synthesis 1 Nickel Q Fe_2O_3 Formaldehyde from methanol 2 R Hydrogenation of vegetable oils 3 Silver S Dehydrogenation of ethylbenzene 4 Cobalt (A) P-3, Q-4, R-1, S-2 P-4, Q-2, R-1, S-3 (B) P-4, Q-3, R-1, S-2 (C) (D) P-3, Q-4, R-2, S-1

Answer: (C)

47. Match polymer in List I with polymer characteristic in List II

	List - I		List - II
Р	Polythylene	1	Elastomer
Q	Phenol-formaldehyde polymer	2	Fiber
R	Polyiosoprene	3	Thermoplastic
S	Polyester	4	Thermosetting polymer

	Engineering	g Success				CH	, GATE-	2012			и	vww.gate	forum.
	(A)	P-3, Q-4, 1	R-1, S-2				(B)	P-4, Q-	2, R-3, S-	1			
	(C)	P-3, Q-2,	R-1, S-4				(D)	P-4, Q-	3, R-1, S-	2			
Ansv	ver: (A	()											
				Co	ommo	n Data fo	or Quest	ions: 48	& 49				
	Α cou	unter-currei	nt extrac	tion col	umn i	s designe	d to rem	ove 99%	of solute	C from	a solut	tion of so	lvent A
	and s	olute C usi	ng pure	solvent	B. Th	e initial c	concentra	ation of so	olute in th	e soluti	on of A	A + C is 2	20 wt%
	and th	he total flow	w of solu	ution is	1000k	kg/h. If th	e equilib	orium rela	tionship i	s Y=2X	, where	e Y = ma	ss of C
	mass	of A and X	t = mass	of C / n	nass o	f B.							
48.	The n	ninimum fl	ow rate	of solve	nt B r	equired ir	n kg/h is						
	(A)	1454		(B)	1584		(C)	1676		(D)	1874		
Ansv	ver:	(B)											
	equat (A)	ion adjuste 5	d to the		eger is 9		(C)	11		(D)	13		
Ansv	-	5	d to the	(B)	9				0 51	(D)	13		
Ansv	(A)	5	d to the	(B)	9	n Data fo			& 51	(D)	13		
Ansv	(A) wer: (B	5		(B) C	9 ommo	n Data fo	or Quest	ions: 50				parator a:	s show
Ansv	(A) wer: (B	5 B) eaction A ₍₁		(B) C	9 ommo	n Data fo + D _(gas) i	or Quest	ions: 50	reactor fo	llowed		parator as	s show
Ansv	(A) wer: (B The r	5 eaction A ₍₁)		(B) C	9 ommo	n Data fo + D _(gas) i	or Quest is carried B, F _{RG}	ions: 50	reactor fo			parator as	s show
Ansv	(A) wer: (B The r	5 eaction A ₍₁)	liq) + B _{(gi}	(B) Ca as)	9 ommo	n Data fo + D _(gas) i Y _{RI}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed		parator as	s show
Ansv	(A) wer: (B The r	5 eaction A ₍₁)	$H_{liq)} + B_{(g)}$	(B) Ca as)	9 Dommo ≻C _(liq)	n Data fo + D _(gas) i Y _{RI}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator as	s show
Ansv	(A) wer: (B The r below	5 eaction A ₍₁ v:	$H_{liq)} + B_{(g)}$	(B) (Compared as) F_B	9 Dommo ≻C _(liq)	n Data fo + D _(gas) i Y _{RI}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator as	s show
Ansv	(A) wer: (B The r below	5 eaction A ₍₁ v:	F_{FB}	(B) (Ca as) F_B F_B F_A	9 Dommo →C _(liq) Reacto	n Data fo + D _(gas) i Y _{RI}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator as	s show
Ansv	(A) wer: (B) The r below Notat Mola	5 eaction A ₍₁ v: lion: r flow rate of	H_{iq} + $B_{(gr}$ F_{FB}	(B) (C) (as) F_B F_B F_A B is F_{FB}	9 Dommo →C _(liq) Reacto	n Data fo + D _(gas) i Y _{RI}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator as	s show
Ansv	(A) wer: (B) The r below Notat Molat Molat	5 eaction A ₍₁ v:	H_{iq} + $B_{(gr}$ F_{FB} F F_{FB} F F F F F F F F F F F	(B) (B) (C) (as) F_B F_B F_A B is F_{FB} F_A	9 →C _(liq) Reacto	n Data fo + D _(gas) i Y _{RI}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator a	s show
Ansv	(A) wer: (B) The r below Notat Mola: Mola:	5 eaction A ₍₁ v: lion: r flow rate of r flow rate of	F_{FB} F of fresh of recycl	(B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C	9 → C _(liq) Reacto	n Data fo + D _(gas) i Y _{Ri}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator as	s show
Ansv	(A) wer: (B The r below Notat Mola: Mola: Mola:	5 eaction A ₍₁ v: ion: r flow rate of r flow rate of r flow rate of	F_{FB} F of fresh of A is F of recycl	(B) (B) (C) (C) (C) (C) (C) (C) (C) (C	9 Pommo $C_{(liq)}$ Reacto F_{RG} s is Y_F	n Data fo + D _(gas) i Y _{Ri}	or Quest is carried B, F _{RG}	ions: 50	reactor fo	llowed F _{PG}		parator as	s show

|CH, GATE-2012|

Statement for Linked Answer Questions: 54 & 55

The first order liquid phase reaction $A \rightarrow P$ is conducted isothermally in a plug flow reactor of 5 liter volume. The inlet volumetric flow rate is 1 liter / min and the inlet concentration of A is 2 mole/liter.

54	• If th	ne exit con	centration of A is	s 0.5 mole / 1	iter, then the	rate consta	int, in min ⁻¹ is		
	(A)	0.06	(B)	0.28	(C)	0.42	(D)	0.64	
Aı	nswer:	(B)							
• • • •									••
= =	ጥኬ	alua flav				a at a na in	arrian of 201	tere relieve The ever	~4
55				aced by 3 n	nixed flow re	actors in	series, of 2.0 I	iters volume. The exac	зt
			A (in %) is	50.5		72 7		04.0	
	(A)	35.9	(B)	52.5	(C)	73.7	(D)	94.8	
Aı	nswer:	(C)							
				<u>GEN</u>	IERAL ABII	LITY			
			9	Q. No. 56 – (<u>60 Carry On</u>	e Mark Ea	ach		
56	. Wh	ich one of	the following op	tions is the c	losest in mea	ning to the	word given be	low?	
	"М	itigate"							
	(A)	Diminis	sh (B)	Divulge	(C)	Dedicate	(D)	Denote	
Aı	nswer:	(A)							
57	Ch	ogo tho m	ost a nnronriata a	ltornativo fra	m the option	aivon hol	ow to complete	the following sentence	
51			eral		^	C		Ū.	•
	(A)	-			(C)	meetings	_		
	(A)	attempt	s (D)	SetDacks	(C)	meetings	(D)	delegations	
Aı	nswer:	(B)							
58	. The	cost func	tion for a produc	t in a firm is	s given by 5a	² where c	is the amount	of production. The firr	m
20	• 110		aon for a produc	e in a min ic	Siven by 5q	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		or production. The III	**

can sell the product at a market price of Rs.50 per unit. The number of units to be produced by the firm such that the profit is maximized is

G	Engineerir	ng Success		C	H, GATE-	2012		www.gateforun					
	(A)	5	(B)	10	(C)	15	(D)	25					
Ansv	ver:	(A)											
59.	Choose the most appropriate alternative from the options given below to complete the following sentence												
	"Sur	esh's dog is t	the one	was hur	t in the sta	mpede."							
	(A)	that	(B)	which	(C)	who	(D)	whom					
Insv	ver:	(A)											
60.	Choose the grammatically INCORRECT sentence:												
	(A)	They gave u	is the money	back less the	service cha	rges of Three H	Hundred rup	bees.					
	(B)	This country	y's expenditu	re is not less th	han that of	Bangladesh.							
	(C)				Ū.	•	, but later s	ettled for a lesser sum					
	(D)	This country	y's expenditu	re on educatio	nal reforms	s is very less							
Ansv	ver:	(D)											
51.	suppl quali relial The j (A)	lies 40% of the ty test are cons ble. probability tha 0.288	nt contracted e shock absor sidered reliab	l to buy shock bers. All shock le Of X's shocl	absorbers f absorbers a absorbers,	are subjected to 96% are reliab	iers X and Y a quality te le. Of Y's s	Y. X supplies 60% and est. The ones that pass hock absorbers, 72% a is made by Y is 0.720					
Insv	ver:	(B)											
52.	The	profile of the a	arch follows	the equation y	C			convention is being he f the arch in meters. T					
	(A)	8 meters	(B)	10 meters	(C)	12 meters	(D)	14 meters					
	ver:	(B)											

G	GATEF Engineerir	g Success		СН	, GATE-2012		www.gateforum.in					
63.	Wanted Temporary, Part-time persons for the post of Field Interviewer to conduct personal interviews to collect and collate economic data. Requirements: High School-pass, must be available for Day, Evening											
	and Saturday work. Transportation paid, expenses reimbursed.											
	Which one of the following is the best inference from the above advertisement?											
	(A)	-										
	(B)											
	(C)	-										
	(D)											
Ansv	wer:	(D)										
<mark>64.</mark>	Give	n the sequence	ce of terms, AD CC	G FK JP, th	e next term is							
	(A)	OV	(<mark>B</mark>) OW		(C) PV	(D) PV	V					
Ansv	wer:	(A)										
65.		Which of the following assertions are CORRECT?										
	Р.	Adding 7 to each entry in a list adds 7 to the mean of the list										
	Q.	Adding 7 to each entry in a list adds 7 to the standard deviation of the list										
	R.	Doubling each entry in a list doubles the mean of the list										
	S.											
	(A)	P, Q	(B) Q, R		(C) P, R	(D) R,	S					
Ansv	wer:	(C)										
			***	END OF	THE PAPER *	**						
	© A	Il rights reserved by T	hinkcell Learning Solutions Pvt	. Ltd. No part of th	is booklet may be reproduced or	r utilized in any form without the	written permission.					