

|ME, GATE-2015, PAPER-II|

www.gateforum.in

GENERAL APTITUDE

Q. No. 1 - 5 Carry One Mark Each

	1 -1	• 1		•	1	• • •			
1.	F	ind	the missing sequence	ce in th	ne letter s	eries bel	ow:		
	А	., CI	D, GHI, ?, UVWX	XΥ					
	(7	4)	LMN	(B)	MNO		(C)	MNOP	(D) NOPQ
A	nswer	:	(C)						
2.	C	hoo	se the correct verb	o fill i	in the bla	nk below	/:		
	L	et u	s						
	(4	A)	Introvert	(B)	alterna	te	(C)	atheist	(D) altruist
A	nswer	:	(B)						
3.	C	hoo	se the most appropr	iate w	ord from	the option	ons give	n below to comple	te the following sentence?
	If	the	athlete had wanted	to cor	ne first ir	n the race	e, he	several	hours every day.
	(4	A)	Should practice				(B)	Should have prac	cticed
	(0	C)	Practised				(D)	Should be praction	cing
A	nswer	:	(B)						
4	C	hoo	se the most suitable	one v	vord subs	titute for	the foll	owing expression	
-	C C	onn	otation of a road or	way	voru subs	diffute for		owing expression	
	C ()	() ()	Partinacious	way			(B)	Viaticum	
	(<i>I</i>	ר)	Clandastina				(D)	Deveneue	
	((_)	Clandestine				(D)	Ravenous	
A	nswer	:	(B)						
		© Al	I rights reserved by Thinkcell Lea	arning Solu	utions Pvt. Ltd.	No part of this	s booklet may	be reproduced or utilized in a	ny form without the written permission.

C	GATEFORUM Engineering Success	ME, GATE-20	15, PAPER-II	www.gateforum.in
5.	If x>y>I, which of the f	following must be true?		
	(i) $\ln x > \ln y$	(ii) $e^x > e^y$	(iii) $y^x > x^y$	(iv) $\cos x > \cos y$
	(A) (i) and (ii)		(B) (i) and (iii)	
	(C) (iii) and (iv)		(D) (ii) and (iv)	
Ang				

Q. No. 6 - 10 Carry Two Marks Each

6. From a circular sheet of paper of radius 30cm, a sector of 10% area is removed. If the remaining part is used to make a conical surface, then the ratio of the radius and height of the cone is _____.

Answer: (2.06)

- 7. In the following question, the first and the last sentence of the passage are in order and numbered 1 and 6. The rest of the passage is split into 4 parts and numbered as 2,3,4, and 5. These 4 parts are not arranged in proper order. Read the sentences and arrange them in a logical sequence to make a passage and choose the correct sequence from the given options.
 - 1. One Diwali, the family rises early in the morning.
 - 2. The whole family, including the young and the old enjoy doing this,
 - 3. Children let off fireworks later in the night with their friends.
 - 4. At sunset, the lamps are lit and the family performs various rituals
 - 5. Father, mother, and children visit relatives and exchange gifts and sweets.
 - 6. Houses look so pretty with lighted lamps all around.
 - (A) 2, 5, 3, 4 (B) 5, 2, 4, 3 (C) 3, 5, 4, 2 (D) 4, 5, 2, 3

Answer: (B)

	CATEFORUM ME, GATE-2015, PAPER-II u	ww.gateforum.in
8.	Ms X will be in Bagdogra from 01/05/2014 to 20/05/2014 and from 22/05/2014 to 31/05	5/2014. On the
	morning of 21/05/204, she will reach Kochi via Mumbai	
	Which one of the statements below is logically valid and can be inferred from the above sen	tences?
	(A) Ms. X will be in Kochi for one day, only in May	
	(B) Ms. X will be in Kochi for only one day in May	
	(C) Ms. X will be only in Kochi for one day in May	
	(D) Only Ms. X will be in Kochi for one day in May.	
A	Inswer: (B)	
•		
9.	$\log \tan 1^{\circ} + \log \tan 2^{\circ} + \dots + \log \tan 89^{\circ}$ is	
	(A) 1 (B) $1/\sqrt{2}$ (C) 0 (D) -1	
A	nswer: (C)	
1(0. Ram and Shyam shared a secret and promised to each other that it would remain betwe	en them. Ram
	expressed himself in one of the following ways as given in the choices below. Identify the	correct way as
	per standard English.	
	(A) It would remain between you and me.	
	(B) It would remain between I and you	
	(C) It would remain between you and I	
	(D) It would remain with me.	
A	nswer: (A)	

E	GATEF Engineerin	ORUM 1g Success	ME, GATE-2015, PA	APER-II		<u>www.gateforum.ir</u>
			MECHANICAL ENG	NEERING		
			<u>Q. No. 1 – 25 Carry One</u>	Mark Each		
1.	The	uniaxial yield stress of a	a material is 300 MPa. Accor	rding to von Mises	criterion, the	shear yield stress
	(in M	IPa) of the material is _	·			
An	swer:	(173.28)			-	
2.	The p	primary mechanism of r	naterial removal in electroch	emical machining (ECM) is	
	(A)	Chemical corrosion	(B)	Etching		
				a 1 .		

.....

Spark erosion (C) Ionic dissolution (D)

Answer: (C	2
------------	---

- Curl of vector $V(x,y,z) = 2x^2i + 3z^2j + y^3k$ at x = y = z = 1 is 3. (C) 3i - 4j(D) 3i - 6k(A) – 3i (B) 3i
- Answer: **(A)**
- 4. A small ball of mass 1kg moving with a velocity of 12m/s undergoes a direct central impact with a stationary ball of mass 2 kg. The impact is perfectly elastic. The speed (in m/s) of 2 kg mass ball after the impact will be _____.

(8) **Answer:**

A rod is subjected to a uni-axial load within linear elastic limit. When the change in the stress is 200 MPa, 5. the change in the strain is 0.001. If the Poisson's ratio of the rod is 0.3, the modulus of rigidity (in GPa) is

(77) Answer:

9. During the development of a product an entirely new process plan is made based on design logic, examination of geometry and tolerance information. This type of process planning is known as

- (A) Retrieval (B) Generative
- (C) Variant (D) Group technology based
- Answer: (B)

Answer:

G Engineering Success

|ME, GATE-2015, PAPER-II|

10. Annual demand of a product is 50000 units and the ordering cost is Rs. 7000 per order considering the basic economic order quantity model, the economic order quantity is 10000 units. When the annual inventory cost is minimized, the annual inventory holding cost (in Rs.) is _____.

.....

Answer: (35000)

11. Sales data of a product is given in the following table:

Month	January	February	March	April	May
Number of unit sold	10	11	16	19	25

Regarding forecast for the month of June, which one of the following statements is TRUE?

- (A) Moving average will forecast a higher value compared to regression
- (B) Higher the value of order N, the greater will be the forecast value by moving average.
- (C) Exponential smoothing will forecast a higher value compared to regression.
- (D) Regression will forecast a higher value compared to moving average

Answer: (D)

12. The Vander Waals equation of state is $\left(p + \frac{a}{v^2}\right)(v-b) = RT$, where p is pressure, v is specific volume, T

is temperature and R is characteristic gas constant. The SI unit of a is

(A) J/kg.K (B) m^3/kg (C) $m^5/kg-s^2$ (D) Pa/kg

Answer: (C)

13. Which of the following statements regarding a Rankine cycle with reheating are TRUE?

- (i) increase in average temperature of heat addition
- (ii) reduction in thermal efficiency
- (iii) drier steam at the turbine exit

G	GATE Engineeri	ORUM ng Success	ME, GAT	E-2015, PAPER-II	<u>www.gateforum.i</u>					
18.	At le	east one eigen	value of a singular matrix	is						
	(A)	Positive	(B) Zero	(C) Negative	(D) Imaginary					
Ans	wer:	(B)								
19.	If th	e fluid veloc	ity for a potential flow is	given by $V(x,y) = u(x,y)$)i + v(x, y)j with usual notations					
	then	the slope of t	he potential line at (x,y) is							
	(A)	v	$(B) - \frac{u}{2}$	(C) $\frac{v^2}{v}$	(D) $\frac{\mathbf{u}}{\mathbf{u}}$					
	()	u	() v	(u^2) u^2	(-) _V					
Ans	wer:	(B)								
20.	Whi	ch one of the	following statements is TR	UE?						
	(A) The 'GO' gage controls the upper limit of a hole									
	(B)	The 'NO' g	age controls the lower limit	t of a shaft						
	(C)	The 'GO' g	age controls the lower limit	t of a hole						
	(D)	The 'NO G	O' gage controls the lower	limit of a hole						
Ans	wer:	(C)								
21.	Thre	e vendors we	re asked to supply a very h	igh precision component.	The respective probabilities of thei					
	meet	ting the strict	design specifications are	0.8 0.7 and 0.5 Each ver	ador supplies one component. The					
	prob	ability that o	ut of total three componer	its supplied by the vendors	at least one will meet the design					
	snec	ification is			, at reast one will meet the adorg.					
	spee									
Ans	wer:	(0.97)								
22.	The	Laplace trans	form of e^{i5t} where $i = \sqrt{-1}$	Ī, is						
	()	s – 5i	(\mathbf{P}) s+5i	(C) s+5i	(\mathbf{D}) s-5i					
	(A)	$s^2 - 25$	(B) $\frac{1}{s^2 + 25}$	(C) $\frac{1}{s^2 - 25}$	(D) $\frac{1}{s^2 + 25}$					
Ans	wer:	(B)								
	© A	All rights reserved by T	hinkcell Learning Solutions Pvt. Ltd. No par	t of this booklet may be reproduced or utilized	I in any form without the written permission.					
			· · ·		i					

G	GATE Engineerin	ORUM 19 Success	ME, GA	re-2015, paper-ii	<u>www.gateforum.in</u>
23.	A ga	s is stored in a cy	lindrical tank of inne	er radius 7 m and wall thick	mess 50 mm. The gage pressure of
	the g	as is 2MPa. The m	aximum shear stress	(in MPa) in the wall is	
	(A)	35	(B) 70	(C) 140	(D) 280
Ansv	wer:	(C)			
2 <mark>4</mark> .	In t	ne laminar flow	of air $(Pr=0.7)$	over a heated plate if δ	and δ_{T} denote, respectively, the
	hydr	odynamic and ther	mal boundary layer t	hicknesses, then	
	(A)	$\delta = \delta_{T}$	(B) $\delta > \delta_{\rm T}$	(C) $\delta < \delta_{\rm T}$	(D) $\delta = 0$ but $\delta_{\rm T} \neq 0$
Ansv	wer:	(C)			
25.	At x	x = 0, the function x	$f(\mathbf{x}) = \mathbf{x} $ has		
	(A)	A minimum			
	(B)	A maximum			_
	(C)	A point of inflex	ion		
	(D)	Neither a maxim	um nor minimum		
Ansv	wer:	(A)			
			<u>Q. No. 26 - 5</u> 5	5 Carry Two Marks Each	
26.	The	total emissive pov	ver of a surface is 50	00 W/m^2 at a temperature T	$_1$ and 1200 W/m ² at a temperature
	T ₂ . V	Where the tempera	tures are in Kelvin. A	Assuming the emissivity of t	the surface to be constant, the ratio
	of th	e temperatures $\frac{I_1}{T_2}$	is		
	(A)	0.308	(B) 0.416	(C) 0.803	(D) 0.874
Ansv	wer:	(C)			
	© A	Il rights reserved by Thinkcell	earning Solutions Pyt 1 td No pa	art of this booklet may be reproduced or utilized	I in any form without the written permission

GATEFORUM Engineering Success

|ME, GATE-2015, PAPER-II|

27. A hollow shaft of 1m length is designed to transmit a power of 30 kW at 700 rpm. The maximum permissible angle of twist in the shaft is 1°. The inner diameter of the shaft is 0.7 times the outer diameter. The modulus of rigidity is 80 GPa. The outside diameter (in mm) of the shaft is _____.

Answer: (44.52)

28. In a Rankine cycle, the enthalpies at turbine entry and outlet are 3159kJ/kg. and 2187 kJ/kg, respectively. If the specific pump work is 2kJ/kg the specific steam consumption (in kg/kW-h) of the cycle based on net output is ______.

Answer: (3.71)

29. A single point cutting tool with 0^orake angle is used in an orthogonal machining process. At a cutting speed of 180 m/min, the thrust fore is 490N. If the coefficient of friction between the tool and the chip is 0.7, then the power consumption (in kW) for the machining operation is _____.

(2.1)Answer:

- **30.** The chance of a student passing an exam is 20%. The chance of a student passing the exam and getting above 90% marks in it is 5% Given that a student passes the examination, the probability that the student gets above 90% marks is
- (A) $\frac{1}{18}$ (B) $\frac{1}{4}$ (C) $\frac{2}{9}$ (D) $\frac{5}{18}$ Answer: (B)
- **31.** A manufacturer has the following data regarding a product:

Fixed cost per month = Rs. 50000

Variable cost per unit = Rs.200

Selling price per unit = Rs.300

Production capacity = 1500 units per month

	GATEF(Engineering	ORUM J Success	ME, GA	TE-2015, PAPER-II	www.gateforum.in
	If the	production is ca	rried out at 80% of th	e rated capacity, that the month	ly profit (in Rs.) is
Ansv	wer:	(70000)			
32.	The h	nead loss for a la	minar incompressible	e flow through a horizontal circ	cular pipe is h ₁ . Pipe length and
	fluid	remaining the sa	ame, if the average fl	ow velocity doubles and the p	ipe diameter reduces to half its
	previo	ous value, the he	ad loss is h_2 . The ratio	h_2/h_1 is	
Ang	(A)	1	(B) 4	(C) 8	(D) 16
	wcr.	(C)			
22	۸. مید ا		and of estimat (see h	af $and burne 1000 am3 and $	under identical conditions. The
33.	A cut	be and a sphere n	hade of cat from (each	of volume 1000 cm ⁻) were cash	t under identical conditions. The
	time t	laken for sondify	ning the cube was 4s.	The solidification time (in s) for	r the sphere is
Ansv	wer:	(6.15)			
					_
34.	One	kg of air (R =	= 287 J/kg.K) unde	rgoes an irreversible process	between equilibrium state 1
	(20° 0	$(\mathbf{C}, 0.9\mathbf{m}^3)$ and \mathbf{e}	equilibrium state 2 (2	20 $^{\rm O}$ C, 0.6m ³). The change in	entropy S ₂ – S ₁ (in J/kg.K) is
Ansi	wer:	(116.36)			
		(11000)			
	Ŧ				
35.	In a	plane stress co	ondition, the compor	nents of stress at point are	$\sigma_x = 20$ MPa, $\sigma_y = 80$ MPa and
	$\boldsymbol{\tau}_{xy} =$	40 MPa. The ma	aximum shear stress (in MPa) at the point is	
	(A)	20	(B) 25	(C) 50	(D) 100
		(\mathbf{C})			
Ansv	wer:				
Ansv	wer:				
Ansv	wer: Work	is done on an a	diabatic system due t	o which its velocity changes fr	rom 10 m/s to 20 m/s, elevation

C	GATEFORUM Engineering Success	ME, GATE-201	5, PAPER-II	<u>www.gateforum.in</u>
	and gravitational acce system, the magnitude	leration is 10 m/s ² . If there is a e of total work done (in kJ) on	the system is	ponent of the energy of the
Ans	swer: (4.5)			
37.	A hollow shaft $d_0 = 2$ 20kW power at 3000 b	d _i where d _o and d _i are the ou RPM. If the maximum permise	ter and inner diameters resp sible shear stress is 30 MPa,	ectively) needs to transmit d _o is
Ans	(A) 11.29 mm	(B) 22.58mm	(C) 33.87 mm	(D) 45.16mm
38.	A cantilever beam OF 10kN is applied at the	P is connected to another beam mid-point of PQ. The magnitu $\begin{array}{c} & & \\$	PQ with a pin joint as shown the of bending moment (in F 10kN Q Q Q Q Q Q Q Q Q Q	wn in the figure. A load of kN-m) at fixed end O is
Ans 39.	(A) 2.5 swer: (C) The flow stress (in Ml	(B) 5 (Pa) of a material is given by	C) 10 (D) 25

 $\sigma = 500\epsilon^{0.1}$

Where ε is true strain. The Young's modulus of elasticity of the material is 200 GPa. A block of thickness 100 mm made of this material is compressed to 95 mm thickness and then the load is removed. The final dimension of the block (in mm) is _____.

Answer: (95.18)

C	GATEF Engineerin	ORUM g Success			ME, (GATE-20)15, P/	APER-II				<u>www.gateforum.in</u>
40.	The	initial ve	elocity of	an obj	ect is 40	m/s. The	acceler	ration a of	the obje	ect is	given l	by the following
	expre	ession: a	=-0.1V									
	When	e V is t	he instanta	aneous	velocity	of the ob	oject. T	he velocity	of the o	bject	after 3	seconds will be
	. <u></u>	·										
Ansy	wer:	(29.632	2)									
41.	A bal	anced c	ounter flov	v heat (exchange	r has a su	rface ar	ea of 20m ²	and over	all he	at trans	fer coefficient of
	20 V	$V/m^2 - F$	K Air (C _r	=100	0J/kg – K	() enterin	ng at O	.4 kg/s and	1 280 K	is to 1	be preł	neated by the air
	leavi	ng the sy	vstem at 0 4	1 kg/s :	and 300 K	The out	let tem	verature (in	K) of the	e nreh	eated a	ir is
	(A)	290	stem at 0	(B)	300	. The Out	(C)	320	(K) of the	(D)	350	11 13
	(11)	270		(12)	500		(0)	520		(D)	550	
Ansv	wer:	(A)										
42.	The v	alues of	function f	(x) at	5 discrete	point are	given	below:			_	
			x	0	0.1	0.2	0.3	0.4				
			f(x)	0	10	40	90	160				
						1			1			
	Using	2 Trapez	oidal role	with st	ep size of	0.1. the v	value of	$\int_{0.4}^{0.4} f(x) dx$	is			
	· · ·				1	,		J ()				
Ansv	wer:	(22)										
43.	In a t	wo-stag	e wire drav	wing o	peration,	the fraction	onal rea	luction (rat	tio of cha	inge ir	n cross-	-sectional area to
	initia	l cross-s	ectional ar	ea) in t	the first st	age is 0.4	4. The f	ractional re	eduction i	n the	second	stage is 0.3. The
	overa	ll fractio	onal reduct	ion is								
	(A)	0.24		(B)	0.58		(C)	0.60		(D)	1.00	
Ansv	wer:	(B)										

G	GATEFORUM Engineering Success	ME, GA	TE-2015, PAPER-II	<u>www.gateforur</u>
44.	A single-degree-free-free-free-free-free-free-free	eedom spring-mass syst	em is subjected to a sin	usoidal force of 10 N amplitude a
	frequency ω along	the axis of the spring. T	The stiffness of the spring	s is 150 N/m, damping factor is 0.2 a
	the undamped na	tural frequency is 10	o. At steady state, the	e amplitude of vibration (in m)
	approximately			
	(A) 0.05	(B) 0.07	(C) 0.70	(D) 0.90
			()	
Ansv	ver: (B)			
45.	For a fully develop	ed laminar flow of wate	er (dynamic viscosity 0.0	01 Pa-s) through a pipe of radius 5c
	the axial pressure g	radient is – 10Pa/m. Th	e magnitude of axial velo	ocity (in m/s) at a radial location of (
	cm is			
Anci	vor: (6.24)			
	(0.24)			
Ansv	slider (in m/s ²) is _ ver: (117.6)			
		, (() , ,) , (2 2 2 2 .
47.	The surface integra	$\prod_{s} \frac{\pi}{\pi} (9x_1 - 3y_1) \text{.ndS ov}$	er the sphere giveb by x	$z^{2} + y^{2} + z^{2} = 9$ 18
Anci	vor: (216)			
A115 \	ver: (210)			
48.	A cantilever beam	with square cross-section	on of 6mm side is subject	ted to a load of 2kN normal to the t
	surface as shown ir	the figure.		
		20mm	2kN	
			Р	
			00mm	
			00mm	

G	GATE Engineeri	FORUM ing Success		ME,	GATE-20	015, P.	APER-II				<u>www.gateforum.in</u>
	The young's modulus of elasticity of the material of the beam is 210 GPa. The magnitude of slope. (in										
	radian) at Q (20 mm from the fixed end) is										
Ansv	Answer: (0.1587)										
		·····									
49.	A c	ylindrical	uranium fue	el rod of ra	dius 5 mm	n in a	nuclear re	actor is	genera	ting he	eat at the rate of
	$4 \times 10^7 \text{ W/m}^3$. The rod is cooled by a liquid (convective heat transfer coefficient 1000 W/m ² .K) at 25°C.										
	At s	At steady state, the surface temperature (in K) of the rod is									
	(A)	308	(B) 398		(C)	418		(D)	448	
Ans	wer:	(B)									
50.	For	the same v	alues of pea	k pressure, j	peak tempe	rature	and heat re	ejection, t	he cor	rect or	ler of efficiencies
	for Otto, Dual and Diesel cycles is										
	(A)	$\eta_{_{Otto}} > \eta_{_{Du}}$	$_{\rm ual} > \eta_{\rm Diesel}$				$(B) \eta_{\text{Dies}}$	$_{el} > \eta_{Dual}$	$>\eta_{\rm otto}$		
	(C)	$\eta_{\text{Dual}} > \eta_{\text{Di}}$	$_{\rm iesel} > \eta_{\rm otto}$				$(D) \eta_{\text{Dies}}$	$_{\rm sel} > \eta_{\rm Otto}$	$> \eta_{\text{Dual}}$		
Ans	wer:	(B)									
		·····									
51.	Duri	ing a TIG v	welding pro	cess, the are	current an	d are v	oltage wer	e 50 A a	nd 60	V, resp	ectively, when in
	the v	welding sp	eed was 150) mm/mi. In	another pr	ocess,	the TIG w	elding is	carried	d out a	t a welding speed
	of 1	20 mm/mi	n at the san	ne arc volta	ge and hea	t input	to the ma	aterial so	that w	veld qu	ality remains the
	same	e. The wel	ding current	(in A) for th	nis process	is					
	(A)	40.00	(1	B) 44.72		(C)	55.90		(D)	62.25	
Ans	wer:	(A)									
52.	52. Consider the following differential equation:										
		$\frac{\mathrm{d}y}{\mathrm{d}t} = -5$	y; initial con	ndition : y =	2 at $t = 0$.						
		All -1-1-4-	Les This I	an Dalution - D. (he served to t		60.00- ··· ***		

55. A resistance-capacitance relaxation circuit is used in an electrical discharge machining process. The discharge voltage is 100 V. At a spark cycle time of μs, the average power input required is 1 kW. The capacitance (in μF) in the circuit is (A) 2.5 (B) 5.0 (C) 7.5 (D) 10.0 Answer: (B) Answer: (B)	G	GATE Engineerin	ORUM ng Success	14	IE, GATE-201	5, PAPER-II		<u>www.gateforum.in</u>				
discharge voltage is 100 V. At a spark cycle time of µs, the average power input required is 1 kW. Th capacitance (in µT) in the circuit is (A) 2.5 (B) 5.0 (C) 7.5 (D) 10.0 Answer: (B)	55.	5. A resistance-capacitance relaxation circuit is used in an electrical discharge machining process. The discharge voltage is 100 V. At a spark cycle time of μ s, the average power input required is 1 kW. The										
capacitance (in µF) in the circuit is (A) 2.5 (B) 5.0 (C) 7.5 (D) 10.0 Answer: (B)												
(A) 2.5 (B) 5.0 (C) 7.5 (D) 10.0	capacitance (in μ F) in the circuit is											
Answer: (B)		(A)	2.5	(B) 5.0	((C) 7.5	(D)	10.0				
*** END OF THE PAPER ***	Ansv	wer:	(B)									
				***	END OF TH	E PAPER *						
© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.		© A	Il rights reserved by	Thinkcell Learning Solutions P	t. Ltd. No part of this book	let may be reproduced or	utilized in any form withc	ut the written permission.				