

www.gateforum.in

GENERAL APTITUDE

Q. No. 1 -5 Carry One Mark Each

Define [x] as the greatest integer less than or equal to x, for each $x \in (-\infty, \infty)$. If y = [x], then area under 1. y for $x \in [1, 4]$ is _____. (A) 6 (B) 3 (C) 4 (D) 1 Answer: (A) He is known for his unscrupulous ways. He always sheds ______ tears to deceive people. 2. (A) crocodile (B) fox's (C) crocodile's (D) fox **Answer: (A)**

3. Select the graph that schematically represents BOTH $y = x^m$ and $y = x^{1/m}$ properly in the interval $0 \le x \le 1$. for integer values of m, where m > 1.

	G	ATEF	RUM Success	IN, GATE-202	0	<u>www.gateforum.in</u>
4.	1. The sum of the first n terms in the sequence 8, 88, 888, 8888, is					
		(A)	$\frac{80}{81} (10^n - 1) + \frac{8}{9}n$	(B)	$\frac{81}{80} (10^n - 1) + \frac{9}{8}n$	
		(C)	$\frac{81}{80} (10^n - 1) - \frac{9}{8}n$	(D)	$\frac{80}{81} (10^n - 1) - \frac{8}{9}n$	
A	nswe	er:	(D)			
5.		Crow	d funding deals with mobilisation	of funds for a pr	oject from a large number of	p <mark>eople, who wou</mark> ld
		be wi	ling to invest smaller amounts three	ough web-based p	blatform in the project.	
		Based	on the above paragraph, which of	the following is	correct about crowd funding?	
		(A)	Funds raised through coerced con	tributions on web	b-based platforms.	
		(B)	Funds raised through voluntary co	ontributions on w	eb-based platforms.	
		(C)	Funds raised through large contril	butions on web-ba	ased platforms.	
		(D)	Funds raised through unwilling co	ontributions on w	eb-based platforms.	
A	nswe	er:	(B)			
6.		I do 1	ot think you know the case wel	l enough to have	opinions. Having said that,	<mark>I agree with yo</mark> ur
		other	point.			
		What does the phrase "having said that" mean in the given text?				
		(A)	as opposed to what I have said			
		(B)	in addition to what I have said			
		(C)	contrary to what I have said			
		(D)	despite what I have said			
A	nswe	er:	(D)			
7.		P, Q,	R and S are to be uniquely coded	using α and β .	If P is coded as $\alpha\alpha$ and Q as	$\alpha\beta$, then R and S,
		respe	tively, can be coded as	·		
		(A)	$\alpha\beta$ and $\beta\beta$ (B) $\beta\beta$ and	αα (C)	$\beta \alpha$ and $\beta \beta$ (D) $\beta \alpha$	and $\alpha\beta$
A	nswe	er:	(C)			

	ORUM ng Success	IN, GATE-2020	<u>www.gateforum.</u>
. Selec Build (A)	ct the wor d: Buildin Growth (A)	rd that fits the analogy: ng::Grow: (B) Grown (C) Grew (D) C	browed
The P, Q	bar graph , R and S.	shows the data of the students who appeared and passed in an examin The average of success rates (in percentage) of these four schools is Performance of Schools P,Q,R and S	ation for four schoo
	Number of students	Appeared Passed 700 700 600 600 500 500 500 500 500 5	
(A) Answer:	59.0% (A)	(B) 59.3% (C) 58.5% (D) 5	8.8%
(A) Answer: 10. Jofra (A) Answer:	59.0% (A) Archer, more fa (A)	 (B) 59.3% (C) 58.5% (D) 5 (D) 5 (D) 5 (D) 5 (D) fast bowler, isthen accurate. (D) fast (B) more faster (C) less fast (D) fast (D) f	8.8% aster

www.gateforum.in

INSTRUMENTATION ENGINEERING

Q. No. 1 -25 Carry One Mark Each

Two 100Ω resistors having tolerance 3% and 4% are connected in series. The effectivetolerance of the series combination (in %, rounded off to one decimal place) is _____.

Answer: (3.5)

Click here to watch video explanation

- 2. If I is the current flowing through a Hall effect sensor and B is the magnetic flux density perpendicular to the direction of the current (in the plane of the Hall effect sensor), the Hallvoltage generated is _____.
 - (A) Directly proportional to both I and B
 - (B) Inversely proportional to I and directly proportional to B
 - (C) Inversely proportional to I and inversely proportional to B
 - (D) Inversely proportional to both I and B

Answer: (A)

3. The capacitance C_x of a capacitive type sensor is (1000x)pF, where x is the input to the sensor. As shown in the figure, the sensor is excited by a voltage $10sin(100\pi t)V$. The other terminal of the sensor is tied to the input of a high input impedence amplifierthrough a shielded cable, with shield connected to ground. The cable capacitance is 100pF.

The peak of the voltage V_A at the input of the amplifier when x = 0.1 (in volts) is _____

ATEFORUM

www.gateforum.in

8. If the diodes in the circuit shown are ideal and the breakdown voltage V_z of the Zener diode is 5V, the power dissipated in the 100 Ω resistor (in watts) is _____.

GATEFORUM Engineering Success	IN, GATE-2020	www.gateforum.in
(A) $\dot{X} = F(X) + X, X(0) = 1$		
(B) $\dot{X} = -F(X) + X, X(0) = 1$		
(C) $\dot{X} = -F(X), X(0) = 1$		
(D) $\dot{X} = F(X), X(0) = 1$		
Answer: (B)		
 12. A phase lead network has the transmuster maximum phase shift for the network (A) 20 rad/s (B) 100 rad/s 	effer function $G(s) = \frac{1+0.2s}{1+0.05s}$. The angular frequence occurs is	ency at which the
Answer: (D)	Click here to watch y	video explanation
13. The Boolean operation performed by $\int_{=}^{\infty} \int_{=}^{\infty} \int_{=}$	the following circuit at the output O is I_0 MUX I_1 I_2 O I_3 O	
(A) $O = S_1 \cdot \overline{S}_0$ (B) $O = S_1 \cdot \overline{S}_0$	$S_1 \oplus S_0$ (C) $O = S_0 \cdot \overline{S}_1$ (D) $O =$	$S_1 + S_0$
Answer: (B)	<u>Click here to watch v</u>	<u>rideo explanation</u>

18. Assuming ideal opamps, the output voltage at V_1 in the figure shown (**in volts**) is ______.

A sinusoid of 10kHz is sampled at 15k samples/s. The resulting signal is passed through anideal low pass filter (LPF) with cut-off frequency of 25kHz. The maximum frequency component at the output of the LPF (in kHz) is ______.

Answer: (25)

Answer:

Click here to watch video explanation

- 20. A set of linear equations is given in the form Ax=b, where A is a 2×4 matrix with real numbers entries and $b \neq 0$. Will it be possible to solve for x and obtain a **unique solution** by multiplying both left and right sides of the equation by A^{T} (the super script T denotes the transpose) and inverting the matrix $A^{T}A$? Answer is ______.
 - (A) Yes, can obtain a unique solution provided the matrix $A^{T}A$ is well conditioned
 - (B) Yes, can obtain a unique solution provided the matrix A is well conditioned

G	GATEFORUM Engineering Success	IN, GATE-2020	www.gateforum.in
24.	A 200mV full-scale dual-slope a	nalog to digital converter (DS-ADC) has a	a reference voltage of 100mV.
	The first integration time is set a	as 100ms. The DS-ADC is operated in the	continuous conversion mode.
	The conversion time of the DS	ADC for an input voltage of 123.4mV	(in ms, rounded off to one
	decimal place) is		
Ansv	ver: (223.4)	Click here	e to watch video explanation
25.	Given $f(A, B, C, D) = \sum m(0, 1, 2, m)$ min-terms and d represents don't	6,8,9,10,11) + \sum d(3,7,14,15) is a Boolean -cares. The minimal sum of products expres	function, where m represents ssion for f is
	(A) $f = \overline{A}B + \overline{C}D$ (B)	$f = \overline{D} + A$ (C) $f = \overline{B} + C$	(D) $f = A\overline{B} + CB$
Ansv	ver: (C)	Click here	e to watch video explanation
26.	The rms value of the phasor current $\sqrt{2100}\cos(1000t)$ volts	ent I in the circuit shown (in amperes) is 100Ω 100Ω 100 mH 10μF	
Ansv	ver: (1)	Click here	<mark>e to watch v</mark> ideo explanation
27.	A circuit consisting of capacito shown in the figure. $7\mu F$	rs, DC voltage source and an amplifier has $2\mu F$ $4\mu F$ $4\mu F$ $3\mu F$ P B =	aving a voltage gain G=-5 is

G	GATEFORUM Engineering Success	IN, GATE-2020	www.gateforum.in
	The effective	e capacitance across the nodes A and B (in μ F, rounded off t	to one decimal place)
	is	·	
Ans	wer: (14.857)	
28.	Assuming that	t the opamp used in the circuit shown is ideal, the reading of the 1 Hz	z bandwidth, permanent
	magnet movin	ng coil (PMMC) type voltmeter (in volts) is	
	2πsin(50 volt	$\begin{array}{c} 10k\Omega \\ \hline \\ 20k\Omega \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	

Answer: (1)

29. A 61/2 digit timer-counter is set in the 'time period' mode of operation and the range is set as 'ns'. For an input signal, the timer-counter displays 1000000. With the same input signal, the timer-counter is changed to 'frequency' mode of operation and the range is set as 'Hz'. The display will show the number ______.

Ŧ

Answer: (1000)

30. Assume the diodes in the circuit shown are ideal.

Ξ

The current I_x flowing through the $3 k\Omega$ resistor (in mA, rounded off to one decimal place) is

Answer: (1.8)

31. Consider the following state variable equations:

 $\dot{\mathbf{x}}_{1}(t) = \mathbf{x}_{2}(t)$ $\dot{\mathbf{x}}_{2}(t) = -6\mathbf{x}_{1}(t) - 5\mathbf{x}_{2}(t)$

The initial conditions are $x_1(0) = 0$ and $x_2(0) = 1$. At t = 1 second, the value of $x_2(1)$ (rounded off to two decimal places) is

Answer: (-0.12)

32. Two T-flip flops are interconnected as shown in the figure. The present state of the flip flops are: A=1, B=1. The input x is given as 1, 0, 1 in the next three clock cycles. The decimal equivalent of $(ABy)_2$ with A being the MSB and y being the LSB, after the 3rd clock cycle is ______.

Answer: (7)

37. A metallic strain gauge of resistance R_x with a gauge factor of 2 is bonded to a structure made of a metal with modulus of elasticity of 200 GN/m². The value of R_x is 1 k Ω when no stress is applied. R_x is a part of a quarter bridge with three identical fixed resistors of 1 k Ω each. The bridge is excited from a DC voltage of 4 V. The structure is subjected to a stress of 100 MN/m². Magnitude of the output of the bridge (in mV, rounded off to two decimal places) is

Answer: (1)

GATEFORUM

38. Consider the function $f(x, y) = x^2 + y^2$. The minimum value the function attains on the line x + y = 1 (rounded off to one decimal place) is

Answer: (0.5)

39. I_1, I_2 and I_3 in the figure below are mesh currents. The correct set of mesh equations for these currents, in matrix form, is _____.

<u>Click here to watch video explanation</u>

40. A 1000/1 A, 5VA, UPF bar-primary measuring current transformer has 1000 secondary turns. The current transformer exhibits a ratio error of -0.1% and a phase error of 3.438 minutes when the primary current is 1000 A. At this operating condition, the rms value of the magnetization current of the current transformer (in amperes, rounded off to two decimal places) is

Answer: (1)

GATEFORUM

41. The mutual inductances between the primary coil and the secondary coils of a linear variable differential transformer (LVDT) shown in the figure are M_1 and M_2 . Assume that the self-inductances L_{s_1} and L_{s_2} remain constant and are independent of x. When x = 0, $M_1 = M_2 = M_0$. When x is in the range ± 10 mm, M_1 and M_2 change linearly with x. At x=+10 mm or -10 mm, the change in the magnitudes of M_1 and M_2

For a particular displacement x=D, the voltage across the detector becomes zero when $|V_2|=1.25|V_1|$. The value of D (in mm, rounded off to one decimal place) is_____.

Answer: (4.3 to 4.6)

42. The circuit shown uses ideal opamp powered form a supply $V_{cc} = 5V$. If the charge q_p generated by the piezoelectric sensor is of the form $q_p = 0.1 \sin(10000\pi t) \mu C$, the peak detector output after 10 cycles of q_p (in volts, rounded off to one decimal place) is_____.

44. The real power drawn by a balanced load connected to a 400V, 50 Hz, balanced, symmetrical 3-phase, 3-wire, RYB sequence mains is measured using the two wattmeter method. Wattmeter W_1 is connected in the R line and wattmeter W_2 is connected in the B line. The line current is measured as $1/\sqrt{3}$ A. If the wattmeter W_1 reads zero, the reading on W_2 (in watts) is

Answer: (200)

ATEFORUM

GATEFORUM

<u>www.gateforum.in</u>

45. The system shown in Fig. (a) has a time response y(t) to an input r(t) = 10 u (t) as shown in Fig. (b), u(t) being the unit step input. Both K, τ are positive. The gain K of the system is_____.

46. As shown in the figure, a slab of finite thickness t with refractive index $n_2 = 1.5$, has air $(n_1 = 1)$ above and below it. Light of free space wavelength 600 nm is incident normally from air as shown.

For a destructive interference to be observed at R, the minimum value of thickness of the slab t (in nm) is ______.
Answer: (200)

C CATEFORUM Engineering Success

50.	Let $g[n] = \begin{cases} 1 & n = 0 \\ 0 & n = \pm 1, \pm 2, \pm 3, \end{cases}$ and $h[n] = \begin{cases} 1 & n = 0, 3, 6, 9 \\ 0 & \text{otherwise} \end{cases}$	
	Consider $y[n] = h[n] \otimes g[n]$, where \otimes denotes the convolution operator. The value of y [2] is	
Ansv	wer: (0) <u>Click here to watch video explanation</u>	
51.	The loop transfer function of a negative feedback system is $G(s)H(s) = \frac{2(s+1)}{s^2}$. The phase margin of the system (in degrees, rounded off to one decimal place) is	
Ansv	wer: (65.45)	
52.	Consider two identical bags B1 and B2 each containing 10 balls of identical shapes and sizes. Bag B1 contains 7 Red and 3 Green balls, while bag B2 contains 3 Red and 7 Green balls. A bag is picked at random and a ball is drawn from it, which was found to be Red. The probability that the Red ball came from bag B1 (rounded off to one decimal place) is	
Answer: (0.7)		
53.	The loop transfer function of a negative feedbacks system is given by $G(s)H(s) = \frac{K}{s(s+2)(s+6)}, \text{ where } K > 0. \text{ The value of } K \text{ at the breakaway point of the root locus for the}$	
	above system (rounded off to one decimal place) is	
Ansv	wer: (5.049) Click here to watch video explanation	
54.	The address lines A_9A_2 of a10 bit, 1.023 V full-scale digital to analog converter (DAC) is connected to	
	the data lines D_7 to D_0 of an 8-bit microprocessor, with A_1 and A_0 of the DAC grounded. Now, D_7D_0	
	is changed from 1010 1010 to 1010 1011.	

The corresponding change in the output of the DAC (in mV, rounded off to one decimal place) is **Answer:** (4)

55. If the opamps in the circuit shown are ideal and $V_x = 0.5 \text{mV}$, the steady state value of V_0 (in volts, rounded off to two decimal places) is_____.

