	ng Success	EC-2	021	www.gateforum.com
		GENERA	<u>l Aptitude</u>	
		<u>Q. No. 1 - 5 Car</u>	ry One Mark Eac	<u>h</u>
I. The	e current population s its population 2 ye	n of a city is 11,02,500. ears ago?	If it has been increa	asing at the rate of 5% per annum, what
(A)	9,92,500	(B) 12,51,506	(C) 9,95,006	(D) 10,00,000
Answer:	(D)		<u>(</u>	<u>Click here to watch video explanatior</u>
,				
2.		. P		
Th	e least number of s	squares that must be add	led so that the line	P-O becomes the line of symmetry
				· · · · · · · · · · · · · · · · · · ·
(A)	6	(B) 3	(C) 4	(D) 7
Answer:	(A)		<u>(</u>	Click here to watch video explanation
			2 2	
3. pa	nd q are pos <mark>i</mark> tive in	tegers and $\frac{p}{q} + \frac{q}{p} = 3$, th	en, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$	
(\mathbf{A})	1 3	(B) 9	(C) 7	(D) 11
Answer:	(C)			Click here to watch video explanation
4. No	stalgia is to anticipa	ation as is to		
Wh	nich one of the follo	owing options maintains	a similar logical rel	lation in the above sentence?
(\mathbf{A})	Future, present		(B) Past, futur	re
()	Future, past		(D) Present, p	ast
(C)				

	ingineering Success	EC-2021	www.gateforum.com
5.	Consider the following sentences:		
	(i) I woke up from sleep		
	(ii) I woked up from sleep		
	(iii) I was woken up from sleep		
	(iv) I was wokened up from sleep		
	Which of the above sentences are grar	nmatically CORRECT?	
	(A) (i) and (iv) (B) (i) and ((iii) (C) (ii) and (iii	i) (D) (i) and (ii)
Answ	ver: (B)	<u>C</u>	lick here to watch video explanation
	<u>Q. No. 6</u>	- 10 Carry Two Marks Eac	<u>:h</u>
5.	Given below are two statements and two	wo conclusions.	
	Statement 1: All purple are green.		
	Statement 2: All black are green.		
	Conclusion I: Some black are purple		
	Conclusion II: No black is purple		
	Based on the above statements and CORRECT?	l conclusions, which one	of the following options is logically
	(A) Either conclusion I or II is correc	t (B) Only conc	lusion I is correct
	(C) Both conclusion I and II are corre	ect (D) Only conc	lusion II is correct
Answ	ver: (A)	<u>C</u>	<mark>lick here to watch video explanation</mark>
7.	Computers are ubiquitous. They are using space exploration. Artificial intelligent given enough training data. For humanissues.	used to improve efficiency in nce (AI) is currently a hot ns, sitting in front of a com	in almost all fields from agriculture to topic. AI enables computers to learn, puter for long hours can lead to health
	Which of the following can be deduce	d from the above passage?	
	(i) Nowadays, computers are presen	t in almost all places.	
	(ii) Computers cannot be used for sol	lving problems in engineerin	ng.
	(iii) For humans, there are both positi	ve and negative effects of us	sing computers.
	(iv) Artificial intelligence can be done	e without data.	
	(A) (ii) and (iv) (B) (i) and ((iii) (C) (ii) and (iii	i) (D) (i), (iii) and (iv)

	Engineering Success	E	C-2021	www.gateforum.com
	The number of min in the bar chart abo	utes spent by two stude ve.	ents, X and Y, exercisin	ng every day in a given week are show
	The number of days the other student, or	s in the given week in v n a given day, is	which one of the stude	ents spent a minimum of 10% more that
	(A) 4	(B) 7	(C) 6	(D) 5
Ansv	wer: (C)		<u> </u>	Click here to watch video explanation
		ELECTRONICS	S AND COMMUNICATIO	<u>ONS</u>
		<u>Q. No. 1 to 25</u>	5 Carry One Mark Ea	<u>ach</u>
ι.	If $(1235)_x = (3033)$	y_y , where x and y indicates	ate the bases of the cor	responding numbers, then
	(A) $x = 9$ and $y = 7$	7	(B) $x = 8$ and	y = 6
	(C) $x = 7$ and $y = 5$	5	(D) $x = 6$ and	y = 4
	• • •			-
Ansv	wer: (B)		<u>(</u>	Click here to watch video explanation
Ansv 2.	Wer: (B) Addressing of a 32 gates required for th (A) 2 ⁸	$K \times 16$ memory is rea the decoder is (B) 2^{19}	Lized using a single determined of $(C) 2^{15}$	Click here to watch video explanation ecoder. The minimum number of ANI (D) 2 ³²
Ansv 2.	wer: (B) Addressing of a 32 gates required for th (A) 2 ⁸ wer: (C)	K × 16 memory is rea ne decoder is (B) 2 ¹⁹	lized using a single de	Click here to watch video explanation ecoder. The minimum number of AN (D) 2 ³² Click here to watch video explanation
Ansv 2. Ansv	wer: (B) Addressing of a 32 gates required for th (A) 2^8 wer: (C) Consider the difference $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$	K × 16 memory is rea the decoder is (B) 2^{19} ential equation given be	Iized using a single de (C) 2 ¹⁵	Click here to watch video explanation ecoder. The minimum number of ANI (D) 2 ³² Click here to watch video explanation
Ansv 2. 3.	wer: (B) Addressing of a 32 gates required for th (A) 2^8 wer: (C) Consider the difference $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{2}$ The integrating fact	K × 16 memory is rea the decoder is (B) 2^{19} ential equation given be \overline{y} for of the differential equation	Iized using a single de (C) 2 ¹⁵ Iow.	Click here to watch video explanation ecoder. The minimum number of ANI (D) 2 ³² Click here to watch video explanation
Ansv 2. 3.	wer: (B) Addressing of a 32 gates required for th (A) 2^8 wer: (C) Consider the difference $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{2}$ The integrating fact (A) $(1-x^2)^{-\frac{1}{4}}$	K × 16 memory is rea the decoder is (B) 2^{19} ential equation given be were a consistent of the differential equation $(B) (1-x^2)^{-\frac{3}{4}}$	lized using a single de (C) 2^{15} dow. uation is (C) $(1-x^2)^{-1}$	Click here to watch video explanation ecoder. The minimum number of ANI (D) 2^{32} Click here to watch video explanation (D) $(1-x^2)^{-\frac{3}{2}}$
Ansv 2. 3.	wer: (B) Addressing of a 32 gates required for th (A) 2^8 wer: (C) Consider the difference $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{2}$ The integrating fact (A) $(1-x^2)^{-\frac{1}{4}}$ wer: (A)	K × 16 memory is real the decoder is (B) 2^{19} ential equation given be were a consistent of the differential equation $\frac{1}{\sqrt{2}}$	lized using a single de (C) 2^{15} How. Low. (C) $(1-x^2)^{-1}$	Click here to watch video explanation ecoder. The minimum number of ANI (D) 2^{32} Click here to watch video explanation V_2 (D) $(1-x^2)^{-3/2}$ Click here to watch video explanation
Ansv 2. 3.	wer: (B) Addressing of a 32 gates required for th (A) 2 ⁸ wer: (C) Consider the difference $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{2}$ The integrating fact (A) $(1-x^2)^{-\frac{1}{4}}$ wer: (A)	K × 16 memory is real the decoder is (B) 2^{19} ential equation given be were a set of the differential equation $\frac{1}{2}$ (B) $(1-x^2)^{-\frac{3}{4}}$	lized using a single de (C) 2^{15} low. uation is (C) $(1-x^2)^{-1}$	Click here to watch video explanation ecoder. The minimum number of AN. (D) 2^{32} Click here to watch video explanation $\frac{9}{2}$ (D) $(1-x^2)^{-\frac{3}{2}}$ Click here to watch video explanation
Ansv 2. Ansv	wer: (B) Addressing of a 32 gates required for th (A) 2^8 wer: (C) Consider the difference $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{2}$ The integrating fact (A) $(1-x^2)^{-\frac{1}{4}}$ wer: (A)	K × 16 memory is real the decoder is (B) 2^{19} ential equation given be were a consistent of the differential equation $e^{-\frac{1}{2}}$ (B) $(1-x^2)^{-\frac{3}{4}}$	lized using a single de (C) 2^{15} dow. uation is (C) $(1-x^2)^{-1}$	Click here to watch video explanation ecoder. The minimum number of AN (D) 2^{32} Click here to watch video explanation $\frac{1}{2}$ (D) $(1-x^2)^{-\frac{3}{2}}$ Click here to watch video explanation

5. A speech signal, band limited to 4 kHz, is sampled at 1.25 times the Nyquist rate. The speech samples, assumed to be statistically independent and uniformly distributed in the range -5V to +5V, are subsequently quantized in an 8-bit uniform quantizer and then transmitted over a voice-grade AWGN telephone channel. If the ratio of transmitted signal power to channel noise power is 26 dB, the minimum channel bandwidth required to ensure reliable transmission of the signal with arbitrarily small probability of transmission error (rounded off to two decimal places) is ______kHz.

Answer:	(9.25)	Click here to watch video explanation

G CATEFORUM Engineering Success

6. Consider the circuit with an ideal OPAMP shown in the figure.

Assuming $|V_{IN}| \ll |V_{CC}|$ and $|V_{REF}| \ll |V_{CC}|$, the condition at which V_{OUT} equals to zero is

(A)	$V_{IN} = 0.5 V_{REF}$	(B) $V_{IN} = 2 + V_{REF}$	(C) $V_{IN} = 2V_{REF}$ (D)	$V_{IN} = V_{REF}$
Answer:	(D)		<u>Click here to</u>	<mark>) watch video explanation</mark>

7. A bar of silicon is doped with boron concentration of 10^{16} cm⁻³ and assumed to be fully ionized. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of 10^{20} cm⁻³s⁻¹. If the recombination lifetime is 100 µs, intrinsic carrier concentration of silicon is 10^{10} cm⁻³ and assuming 100% ionization of boron, then the approximate product of steady-state electron and hole concentrations due to this light exposure is

(A) 10^{20} cm^{-6}	(B) $2 \times 10^{20} \text{ cm}^{-6}$	(C) 10^{32} cm	(D)	$2 \times 10^{32} \text{ cm}^{-3}$
Answer: (D)			Click here to	watch video explanation

8. The refractive indices of the core and cladding of an optical fiber are 1.50 and 1.48, respectively. The critical propagation angle, which is defined as the maximum angle that the light beam makes with the axis of the optical fiber to achieve the total internal reflection, (rounded off to two decimal places) is _____ degree.

Answer: (9.36)

<u>Click here to watch video explanation</u>

C	GATEFORUM Engineering Success	EC-2021	www.gateforum.com
9.	A 4 kHz sinusoidal message si sampling rate of 32 kHz. The (rounded off to two decimal pl	ignal having amplitude 4V is fea e minimum step size required aces) isV.	d to a delta modulator (DM) operating at a to avoid slope overload noise in the DM
Ansv	ver: (3.14)		<u>Click here to watch video explanation</u>
10.	The vector function $F(r) = -x$	$\hat{i} + y\hat{j}$ is defines over a circular a	arc C shown in the figure.
	\hat{f} \hat{j} The line integral $\int_{C} F(r) dr$ is	45° \hat{i} 1	
	(A) $\frac{1}{4}$ (B)	$\frac{1}{3}$ (C) $\frac{1}{2}$	(D) $\frac{1}{6}$
Ansv	ver: (C)	5 2	Click here to watch video explanation
11.	Consider two 16-point seque	nces $x[n]$ and $h[n]$. Let the	linear convolution of $x[n]$ and $h[n]$ be
	denoted by y[n], while z[n]	denotes the 16-point inverse $\int x[n]$ and $h[n]$. The value(a)	of k for which $z[k] = y[k]$ is/or
	(A) In O	$(\mathbf{x}_{1}) = \mathbf{x}_{1}$	of k for which $Z[k] = y[k]$ is are
	(A) $k = 0$ (C) $k = 15$	(B) $k = 0$, (D) $k = 0$	$1, 2, \dots, 15$
Ansy	ver: (C)	(D) K = 0 d	Click here to watch video explanation
12 .	Consider a rectangular coord	linate system (x, y, z) with u	unit vectors a_x, a_y and a_z . A plane wave
	travelling in the region $z \ge 0$	with electric field vector $E = 10$	$O\cos(2 \times 10^8 t + \beta z)a_y$ is incident normally
	on the plane at $z = 0$, where β	is the phase constant. The region	on $z \ge 0$ is in the free space and the region

z < 0 is filled with a lossless medium (permittivity $\varepsilon = \varepsilon_0$, permeability $\mu = 4\mu_0$, where $\varepsilon_0 = 8.85 \times 10^{12}$ F/m and $\mu_0 = 4\pi \times 10^{-7}$ H/m). The value of the reflection coefficient is

(A)
$$\frac{3}{5}$$
 (B) $\frac{1}{3}$ (C) $\frac{2}{5}$ (D) $\frac{2}{3}$

Answer: (B)

Click here to watch video explanation

1 3. (EC-2021	www.gateforum.com
(2	Consider the vector fi	eld F = $a_x (4y - c_1z) + a_y (4x + 2z) + a_z (2y)$	+ z) in a rectangular coordinate system
	x, y, z) with unit vec	tors a_x, a_y and a_z . If the field F is irrotatio	nal (conservative), then the constant c_1
(in integer) is		
Answer:	(0)	<u>(</u>	Click here to watch video explanation
l 4. A	An 8-bit unipolar (all cale voltage range france fr	analog output values are positive) digital om 0V to 7.68V. If the digital input code voltage of the DAC (rounded off to one de	-to-analog converter (DAC) has a full- is 10010110 (the leftmost bit is MSB), ccimal place) isV.
Answer:	(4.5)	<u>(</u>	<u>Click here to watch video explanation</u>
5. C	Consider the circuit sh	through the 7Ω resistor between P and Q	(rounded off to one decimal place) is
Answer:	(0.5)	<u>(</u>	<u>Click here to watch video explanation</u>
. 6. C a s	Consider a carrier sign modulation index o ignal, the percentage	nal which is amplitude modulated by a sing of 50%. If the carrier and one of the sidel of power saved (rounded off to one decima	gle-tone sinusoidal message signal with bands are suppressed in the modulated Il place) is
Answer:	(94.4)	<u> </u>	<u>Click here to watch video explanation</u>

|EC-2021|

17. For the circuit with an ideal OPAMP shown in the figure, V_{REF} is fixed.

GATEFORUM

If $V_{OUT} = 1$ volt for $V_{IN} = 0.1$ volt and $V_{OUT} = 6$ volt for $V_{IN} = 1$ volt, where V_{OUT} is measured across R_L connected at the output of this OPAMP, the value of R_F/R_{IN} is

(A) 5	<mark>5.5</mark> 55	(B) 2.860	(C) 3.825	(D)	3.285
Answer:	(*)			Click here to	watch video explanation

18. The energy band diagram of a p-type semiconductor bar of length L under equilibrium condition (i.e., the Fermi energy level E_F is constant) is shown in the figure. The valance band E_V is sloped since doping is non-uniform along the bar. The difference between the energy levels of the valence band at the two edges of the bar is Δ .

G	GATEFORUM Engineering Success	EC	-2021	www.gateforum.com
	If the charge of an e semiconductor bar is	electron is q, then	the magnitude of th	ne electric field developed inside this
	(A) $\frac{2\Delta}{qL}$	(B) $\frac{\Delta}{2qL}$	(C) $\frac{\Delta}{qL}$	(D) $\frac{3\Delta}{2qL}$
Ans	wer: (C)			<u>Click here to watch video explanation</u>
19 <mark>.</mark>	A standard air-filled re For the dominant mode	ectangular waveguide e of wave propagatio	with dimensions a = n, the phase velocity	= 8 cm, b = 4 cm, operates at 3.4 GHz. of the signal is v_p . The value (rounded
	off to two decimal plac	es) of v_p/c , where c	e denotes the velocity	of light, is
Ans	wer: (1.199)			<u>Click here to watch video explanation</u>
20.	Consider a polar non-rand '0' respectively, i variance $0.4 V^2$. If the voltage for a maximum	return to zero (NRZ) s transmitted in the a priori probability a posteriori (MAP)	waveform, using +2 presence of additive of transmission of a receiver (rounded off	2V and $-2V$ for representing binary '1' e zero-mean white Gaussian noise with binary '1' is 0.4, the optimum threshold to two decimal places) isV.
Ans	wer: (0.04)	• • •	,	Click here to watch video explanation
21.	Consider a real-valued $y(t) = x(t)x(1+\frac{t}{2})$ is	base-band signal x(t), band limited to 1	0 kHz. The Nyquist rate for the signal
	(A) 15 kHz	(B) 30 kHz	(C) 60 kHz	(D) 20 kHz
Ans	wer: (B)			Click here to watch video explanation
22 <mark>.</mark>	Two continuous random $Y = 2X + 3$	n variables X and Y	are related as	
	Let σ_X^2 and σ_Y^2 denote	the variances of X an	d Y, respectively. Th	ne variances are related as
	(A) $\sigma_{\rm Y}^2 = 5\sigma_{\rm X}^2$	(B) $\sigma_{\rm Y}^2 = 2\sigma_{\rm X}^2$	(C) $\sigma_{\rm Y}^2 = 25 \sigma_{\rm Y}^2$	$\sigma_{\rm X}^2$ (D) $\sigma_{\rm Y}^2 = 4\sigma_{\rm X}^2$
Ansv	wer: (D)		2	Click here to watch video explanation

		=• =•==	www.gateforum.com
23.	An antenna with a direct electric field in free space off to three decimal places	ive gain of 6 dB is radiating a total p at a distance of 8 km from the antenna b) isV/m.	ower of 16 kW. The amplitude of the a in the direction of 6 dB gain (rounded
Answ	er: (0.245)	<u> </u>	lick here to watch video explanation
24.	A message signal having kHz is sampled and fed t PCM output is transmitte Assuming that the quantiz ratio that can be obtained	peak-to-peak value of 2V, root mean so o a pulse code modulation (PCM) syst d over a channel that can support a m cation error is uniformly distributed, the by the PCM system (rounded off to two	uare value of 0.1V and bandwidth of 5 em that uses a uniform quantizer. The aximum transmission rate of 50 kbps. maximum signal to quantization noise decimal places) is
Answ	er: (30.72)	<u> </u>	lick here to watch video explanation
25.	If the vectors $(1.0, -1.0, 2$.0), (7.0, 3.0, x) and (2.0, 3.0, 1.0) in R	³ are linearly dependent, the value of x
Answ	er: (8)	<u>(</u>	lick here to watch video explanation
		Q. No. 26 to 55 Carry Two Marks E	<u>ach</u>
26.	A box contains the follow	ing three coins.	
	I. A fair coin with heads on	both the faces	
	III. A coin with tails on b	both the faces.	
	A coin is picked randomly is then picked randomly a the second toss is	y from the box and tossed. Out of the tw nd tossed. If the first toss results in a he	vo remaining coins in the box, one coin ead, the probability of getting a head in
	(A) $\frac{1}{2}$ (B) $\frac{2}{5}$ (C) $\frac{2}{3}$	(D) $\frac{1}{3}$
Answ	er: (D)	(lick here to watch video explanation
27.	Consider the integral $\oint_C \frac{s}{x^2}$	$\frac{\sin(x)}{(x^2+4)}dx$	
	Where C is a counter-cloc	kwise oriented circle defined as $ x - i =$	² . The value of the integral is
	(A) $-\frac{\pi}{4}\sin(2i)$ (B) $\frac{\pi}{4}\sin(2i)$ (C) $\frac{\pi}{8}\sin(2i)$	(D) $-\frac{\pi}{8}\sin(2i)$
Answ	er: (*)	<u>(</u>	lick here to watch video explanation

CEC-2021 www.gateforum.com 28. In the circuit shown in the figure, the transistors M₁ and M₂ are operating in saturation. The channel

 $\mathbf{M}_{\! 1} \text{ and } \mathbf{M}_{\! 2} \,$ are $\, r_{\! 01} \,$ and $r_{\! 02} \text{, respectively.}$

 V_{DD} $V_{in} \longrightarrow V_{out}$ M_{1} $(A) = g_{in2} \left(\frac{1}{g_{in1}} \| r_{o_{2}}\right)$ $(B) = g_{in2} \left(\frac{1}{g_{in2}} \| r_{o_{1}} \| r_{o_{2}}\right)$ $(D) = g_{in1} \left(\frac{1}{g_{in2}} \| r_{in1} \| r_{o_{2}}\right)$ (D) = Click here to watch video explanation

29. The switch in the circuit in the figure is in position P for a long time and then moved to position Q at time t = 0. $5 k\Omega$

GATEFORUM Engineering Success	EC	-2021	www.gatefo	rum.com
The value of $\frac{dv(t)}{dt}$	$\frac{1}{2}$ at t = 0 ⁺ is			
(A) $3 V/s$	(B) -5 V/s	(C) -3 V/s	(D) 0 V/s	
Answer: (C)		<u>Clic</u>	<u>ck here to watch video e</u>	<u>xplanation</u>

30. A circuit with an ideal OPAMP is shown in the figure. A pulse V_{IN} of 20 ms duration is applied to the input. The capacitors are initially unchanged.

The output voltage V_{OUT} of this circuit at $t = 0^+$ (in integer) is ______V.Answer:(-12)Click here to watch video explanation

31. The exponential Fourier series representation of a continuous-time periodic signal x(t) is defined as

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t}$$

Where ω_0 is the fundamental angular frequency of x(t) and the coefficient of the series are a_k . The following information is given about x(t) and a_k .

I. x(t) a real and even, having a fundamental period of 6

II. The average value of x(t) is 2

III.
$$a_k = \begin{cases} k, & 1 \le k \le 3 \\ 0, & k > 3 \end{cases}$$

The average power of the signal x(t) (rounded off to one decimal place) is _____.

Answer: (32)

Click here to watch video explanation

CEngineering Success IEC-2021 www.gateforum.com

32. For a vector field $D = \rho \cos^2 \varphi a_{\rho} + z^2 \sin^2 \varphi a_{\varphi}$ in a cylindrical coordinate system (ρ, φ, z) with unit vectors a_{ρ}, a_{φ} and a_z , the net flux of D leaving the closed surface of the cylinder $(\rho = 3, 0 \le z \le 2)$ (rounded off to two decimal places) is _____.

Answer: (56.55)

<u>Click here to watch video explanation</u>

33. For the transistor M_1 in the circuit shown in the figure, $\mu_n C_{ox} = 100 \,\mu A/V^2$ and (W/L) = 10, where μ_n is the mobility of electron, C_{ox} is the oxide capacitance per unit area, W is the width and L is the length.

The channel length modulation coefficient is ignored. If the gate-to-source voltage V_{GS} is 1V to keep the transistor at the edge of saturation, then the threshold voltage of the transistor (rounded off to one decimal place) is ______V.

Answer: (0.55)

Click here to watch video explanation

34. In a high school having equal number of boy students and girl students, 75% of the students study science and the remaining 25% students study Commerce. Commerce students are two times more likely to be a boy than are Science students. The amount of information gained in knowing that a randomly selected girl student studies Commerce (rounded off to three decimal places) is ______ bits.

Answer: (3.34)

Click here to watch video explanation

G	GATEFORUM Engineering Success	EC-2021	www.gateforum.com
35.	For a unit step	input u[n], a discrete-time L	TI system produces an output signal
	$(2\delta[n+1]+\delta[n]+\delta[n])$	[n-1]). Let $y[n]$ be the output of the	system for an input $\left(\left(\frac{1}{2}\right)^n u[n]\right)$. The value
	of y[0] is		
Answ	ver: (0)		Click here to watch video explanation
36.	The propagation dela figure are 4ns, 2ns ar P ———	ays of the XOR gate, AND gate and n ad 1 ns, respectively.	nultiplexer (MUX) in the circuit shown in the
	Q[R[S T	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	MUX Y
	If all the inputs P, propagation delay of	Q, R, S and T are applied simulation the circuit is	taneously and held constant, the maximum
	(A) 3 ns	(B) 6 ns (C) 5 n	s (D) 7 ns
Answ	ver: (B)		Click here to watch video explanation
37.	A digital transmissio noisy channel. If the corresponding to the	n system uses a (7, 4) systematic line ee of the message-codeword pairs in e i th message m _i , are known to be (1	ar Hamming code for transmitting data over a this code $(m_t : c_t)$, where c_t is the codeword 1100; 0101100), (1110; 0011110) and (0110;
	1000110), then which	h of the following is a valid codeword	l in this code?
	(A) 1101001	(B) 0110100 (C) 000	01011 (D) 1011010
Ancu	ver: (C)		Click here to watch video explanation

EXAMPLE EXAMPLE EXAM

42. A silicon P-N junction is shown in the figure. The doping in the P region is 5×10^{16} cm⁻³ and doping in the N region is 10×10^{16} cm⁻³. The parameters given are

Electron charge $(q) = 1.6 \times 10^{-19}$ C

Build-in voltage $(\phi_{\rm bi}) = 0.8V$

Vacuum permittivity $(\varepsilon_0) = 8.85 \times 10^{-12} \text{ F/m}$

Relative permittivity of silicon $(\varepsilon_{s_i}) = 12$

The magnitude of reverse bias voltage that would completely deplete one of the two regions (P or N) prior to the other (rounded off to one decimal place) is ______V.

Answer:	(8.23)	Click here to watch video explanation

43. The impedance matching network shown in the figure is to match a lossless line having characteristics impedance $Z_0 = 50\Omega$ with a load impedance Z_L . A quarter-wave line having a characteristic impedance $Z_1 = 75\Omega$ is connected to Z_L . Two stubs having characteristic impedance of 75Ω each are connected to this quarter-wave line. One is a short-circuited (S.C) stub of length 0.25 λ connected across PQ and the other one is an open-circuited (O.C) stub of length 0.5 λ connected across RS.

The time after which the voltage across the capacitor becomes zero (rounded off to three decimal places) is _____ms.

Answer: (0.1389)

<u>Click here to watch video explanation</u>

45. The electrical system shown in the figure converts input source current $i_s(t)$ to output voltage $v_o(t)$.

|EC-2021|

Current $i_L(t)$ in the inductor and voltage $v_C(t)$ across the capacitor are taken as the state variables, both assumed to be initially equal to zero, i.e., $i_L(0) = 0$ and $v_C(0) = 0$. The system is

- (A) completely state controllable but not observable
- (B) completely state controllable as well as completely observable
- (C) neither state controllable nor observable
- (D) completely observable but not state controllable

Answer: (C)

GATEFORUM

Click here to watch video explanation

www.gateforum.com

46. A real 2×2 non-singular matrix A with repeated eigen value is given as

 $\mathbf{A} = \begin{bmatrix} \mathbf{x} & -3.0 \\ 3.0 & 4.0 \end{bmatrix}$

Where x is a real positive number. The value of x (rounded off to one decimal place) is _____

Answer:	(10)	Click here to watch video explanation

C	GATEFORUM Engineering Success	EC-2021	www.gateforum.com	
47.	For an n-channel silicon MOSFET with 10 nm gate oxide thickness, the substrate sensitivity $\left(\frac{\partial V_T}{\partial V_{BS}}\right)$			
	found to be 50 mV/V at	a substrate voltage $ V_{BS} = 2V$, where	ere $V_{\rm T}$ is the threshold voltage of the	
	MOSFET. Assume that,	$V_{BS} >> 2\phi_B$, where $q\phi_B$ is the separate	tion between the Fermi energy level E_F	
	and the intrinsic level E _i i	n the bulk. Parameters given are		
	Electron charge $(q)=1.6$	×10 ⁻¹⁹ C		
	Vacuum permittivity (ε_0)	$= 8.85 \times 10^{-12} \mathrm{F/m}$		
	Relative permittivity of sil	icon $(\varepsilon_{\rm Si}) = 12$		
	Relative permittivity of ox	ide $(\varepsilon_{ox}) = 4$		
	The doping concentration	of the substrate is		
	(A) $7.37 \times 10^{15} \text{ cm}^{-3}$	(B) 4.37×10	¹⁵ cm ⁻³	
	(C) $2.37 \times 10^{15} \text{ cm}^{-3}$	(D) 9.37×10	¹⁵ cm ⁻³	
Ans	swer: (A)		<u>Click here to watch video explanation</u>	

48. The propagation delay of the exclusive-OR (XOR) gate in the circuit in the figure is 3 ns. The propagation delay of all the flip-flops is assumed to be zero. The clock (Clk) frequency provided to the circuit is 500 MHz.

Starting from the initial value of the flip-flop outputs $Q_2Q_1Q_0 = 111$ with $D_2 = 1$, the minimum number of triggering clock edges after which the flip-flop outputs $Q_2Q_1Q_0$ becomes 100 (in integer) is _____.

Answer: (5)

Click here to watch video explanation

G	GATEFORUM Engineering Success	EC-2021	www.gateforum.com
49.	The content of the registers a	are $R_1 = 25H$, $R_2 = 30H$	and $R_3 = 40H$. The following machine instructions
	are executed.		
	$PUSH\{R_1\}$		
	$PUSH\{R_2\}$		
	$PUSH\{R_3\}$		
	$POP\{R_1\}$		
	$POP\{R_2\}$		
	$POP\{R_3\}$		
	After execution, the content o	f registers R_1, R_2, R_3 ar	e
	(A) $R_1 = 30H, R_2 = 40H, R_3$	=25H (B	$R_1 = 25H, R_2 = 30H, R_3 = 40H$
	(C) $R_1 = 40H, R_2 = 30H, R_3$	=25H (D	b) $\mathbf{R}_1 = 40\mathbf{H}, \mathbf{R}_2 = 25\mathbf{H}, \mathbf{R}_3 = 30\mathbf{H}$
Ans	wer: (C)		Click here to watch video explanation

50. An asymmetrical periodic pulse train v_{in} of 10V amplitude with on-time $T_{ON} = 1$ ms and off-time $T_{OFF} = 1 \,\mu s$ is applied to the circuit shown in the figure.

The difference between the maximum voltage and minimum voltage of the output waveform v_0 (in integer) is ______V.

Answer: (10)

Click here to watch video explanation

GATEFORUM Engineering Success

|EC-2021|

www.gateforum.com

51. The circuit in the figure contains a current source driving a load having an inductor and a resistor in series, with a shunt capacitor across the load. The ammeters is assumed to have zero resistance. The switch is closed at time t = 0.

Initially, when the switch is open, the capacitor is discharged and the ammeter reads zero ampere. After the switch is closed, the ammeter reading keeps fluctuating for some till it settles to a final steady value. The maximum ammeter reading that one will observe after the switch is closed (rounded off to two decimal places) is ______A.

52. The complete Nyquist plot of the open-loop transfer function G(s)H(s) of a feedback control system is shown in the figure.

If G(s)H(s) has one zero in the right-half of the s-plane, the number of poles that the closed-loop system will have in the right-half of the s-plane is

(A)		(B) 3	(C) 4	
Answer:	(B)			Click here to watch video explanation

53. A unity feedback system that uses proportional-integral (PI) control is shown in the figure.

The stability of the overall system is controlled by tuning the PI control parameters K_p and K_1 . The maximum value of K_1 that can be chosen so as to keep the overall system stable or, in the worst case, marginally stable (rounded off to three decimal places) is _____.

Answer: (3.125)

Click here to watch video explanation

55. Consider a superheterodyne receiver tuned to 600 kHz. If the total oscillator feeds a 1000 kHz signal to the mixer, the image frequency (in integer) is ______ kHz.

Answer: (1400)

Click here to watch video explanation