**Materials and components**

Structure and properties of Electrical Engineering materials Conductors, Semi‐conductors and Insulators, Magnetic, Ferroelectric, piezoelectric Ceramic, Optical and Superconducting materials. Passive components and characteristics Resistors, Capacitors and Inductors : Ferrites, Quartz crystal. Ceramic resonators, Electromagnetic and electro‐mechanical components.

**Physical Electronics, Electron Devices and ICs**

Electrons and holes in semi‐conductors. Carrier Statistics, Mechanism of current flow in a semi‐conductor, Hall effect. Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs. CTOs, power MOSFETs; Basics of ICs‐bipolar, MOS and CMOS types; Basics of Opto‐Electronics.

**Signals and Systems**

Classification of signals and systems; System modelling in terms of differential and difference equations; State variable representation; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z‐transforms and their applications to the analysis and characterisation of discrete time systems; Random signals and probability. Correlation functions; Spectral density; Response of linear system to random inputs.

**Network Theory**

Network analysis techniques: Network theorems, transient response steady state sipusoidal response; Network graphs and their applications in network analysis; Tellegen’s theorem. Two port networks : Z, Y, h and transmission parameters. Combination of two ports analysis of common two ports. Network functions; parts of network functions; obtaining a network function from a given part. Transmission criterion : dalcy and rise time. Elmorc’s and other definition effect of cascading Elements of network synthesis.

**Electromagnetic Theory**

Analysis of electrostatic and magnetostatic fields; Laplace’s and Potson’s equations; Boundary value problems and their solutions; Maxwell’s equations : application to wave propagation in bounded and unbounded media; Transmission lines : basic theory, standing wave, matching applications microstrip lines; basics of waveguides and resonators; Elements of antenna theory.

**Electronic Measurement and Instrumentation**

Basic concepts standards and error analysis; Measurements of basic electrical quantities and parameters; Electronic measuring instruments and their principles of working, analog and digital, comparison characteristics, applications Transducers; Electronic measurements of non‐electrical quantities like temperature, pressure, humidity etc. Basics of telemetry for industrial use.